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Differential item functioning (DIF) occurs when the probability of endorsing an

item differs across groups for individuals with the same latent trait level. The

presence of DIF items may jeopardize the validity of an instrument; therefore, it is

crucial to identify DIF items in routine operations of educational assessment.

While DIF detection procedures based on item response theory (IRT) have been

widely used, a majority of IRT-based DIF tests assume predefined anchor (i.e.,

DIF-free) items. Not only is this assumption strong, but violations to it may also

lead to erroneous inferences, for example, an inflated Type I error rate. We

propose a general framework to define the effect sizes of DIF without a priori

knowledge of anchor items. In particular, we quantify DIF by item-specific

residuals from a regression model fitted to the true item parameters in respec-

tive groups. Moreover, the null distribution of the proposed test statistic using

robust estimator can be derived analytically or approximated numerically even

when there is a mix of DIF and non-DIF items, which yields asymptotically

justified statistical inference. The Type I error rate and the power performance of

the proposed procedure are evaluated and compared with the conventional

likelihood-ratio DIF tests in a Monte Carlo experiment. Our simulation study has

shown promising results in controlling Type I error rate and power of detecting

DIF items. Even when there is a mix of DIF and non-DIF items, the true and false

alarm rate can be well controlled when a robust regression estimator is used.

Keywords: differential item functioning; multiple-group IRT; measurement invariance;

robust regression; delta method; multiple imputation; likelihood-ratio test; implicit

differentiation

1. Introduction

In test theory, an item is said to exhibit differential item functioning (DIF) if

individuals of the same ability level from different groups have unequal prob-

abilities to select a given response to the item. The presence of DIF items may
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greatly impact the validity of a test and thus jeopardize the inference drawn from

the test score. For instance, if item parameters are the functions of group mem-

bership, between group differences in test scores may not reflect true difference

in the trait but are merely due to the variation of its parameters across groups.

Consequently, the test score may be biased for or against the examinees of

specific groups. Therefore, it is crucial to identify DIF items in routine operations

of the educational assessment.

While DIF detection methods based on the multiple-group item response

theory (IRT) have been widely used (see, e.g., Glas, 1998; Lord, 1980; Thissen

et al., 1993; Woods et al., 2013), many IRT-based DIF tests require knowing

exactly which items are DIF-free items or anchor items1 (e.g., Shih & Wang,

2009). Under the multiple-group IRT framework (Bock & Zimowski, 1997),

item parameters of the underlying IRT model from different groups must be

placed on a common scale before any DIF test statistics can be implemented

to test the statistical significance of the difference. In doing so, differences in

item response functions of different groups are solely due to item parameters

irrespective of any potential differences in the underlying distributions of the

latent trait across groups. For this purpose, anchor items must be explicitly

chosen for the majority of the IRT DIF detection methods. Ideally, anchor items

are supposed to be DIF-free to avoid inflated false alarm rate. Numerous studies

have shown the critical role of DIF-free anchors in making a correct statistical

inference in DIF detection. For instance, one of the most commonly used anchor-

ing methods is the all-other anchor method, which uses all other items as anchors

except the studied items (see, e.g., Cohen et al., 1996; Kim & Cohen, 1998).

However, simulation studies have found that the all-other method only performs

well when DIF is balanced2 or when there is no or very few DIF items; otherwise,

the Type I error rate of detecting DIF items can be inflated (Finch, 2005; Wang,

2004; Wang & Yeh, 2003; Woods, 2009). The reason is that if there are DIF

items, the latent variable distributions are incorrectly estimated, which further

leads to spurious between-group discrepancies in estimated item parameters for

non-DIF items. Consequently, the false alarm rates of the DIF tests may be

seriously inflated (see Kopf et al., 2013; Wang, 2004, for illustrative examples

with scale shift due to anchor contamination).

Previous studies on DIF analysis without predefined anchor items can be

roughly categorized into two-step and one-step approaches. Two-step

approaches focus on the anchor selection strategy that firstly determines which

items should be used as anchors, and then, the DIF detection is carried out at

the second step (for overview, see Kopf et al., 2015; Shih & Wang, 2009). The

one-step approach identifies DIF items directly without explicitly specifying

anchor items (e.g., Frederickx et al., 2010; Magis et al., 2015; Strobl et al.,

2015; Tutz & Berger, 2016).

In general, the anchor item selection strategy (e.g., Kopf et al., 2015; Wang

et al., 2012; Wang & Su, 2004; Woods, 2009) aims to select the anchor items
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empirically via an iterative procedure, which is often commonly referred to as

item purification in the literature. IRT-based item purification alternates between

item calibration and removal of DIF items until no further DIF items can be

identified. The selected DIF-free anchor items are then used as a common scale

for the final DIF detection for the rest of the items. Nevertheless, the stepwise

anchor selection method is not only time inefficient but also lacks theoretical

justifications. Moreover, in practice, it is difficult to implement an appropriate

anchor selection strategy. Kopf et al. (2015) found that the optimal anchor

selection strategy depends on the sample size, the proportion of DIF items, the

direction of the DIF, and also the anchor length. On the contrary to the stepwise

solution, one-step approaches have a sound statistical justification. Approaches

of this type include but are not limited to the regularized DIF detection method

using Lasso (e.g., Belzak & Bauer, 2020; Magis et al., 2015). However, drawing

statistical inference (e.g., hypothesis testing and interval estimation) based on

those methods can be challenging.

The current work develops an alternative one-step DIF detection approach

that does not count on a priori knowledge of anchor items. Instead, an automatic

process in finding the anchor items to link the latent scale of the two groups (i.e.,

a subset of DIF-free anchor items) is proposed. Specifically, it requires separate

calibration of item parameters using item response data from the two groups.

Then, a reference line is determined by regressing one set of item parameters

onto the other, preferably using robust regression methods. Lastly, the test sta-

tistics can be formularized as residuals from the reference line determined by the

majority of item parameters. We propose DIF test statistics with justified asymp-

totic properties and evaluate their finite-sample performance via a simulation

study. We focus on the most commonly used IRT model—two-parameter logistic

(2PL) model (Birnbaum, 1968) for notational conciseness and computational

convenience. It is worth mentioning that placing a reference line through the

items, preferably DIF free items, is commonly used in the Rasch modeling (see

the graphical tests in Wright & Stone, 1999). Similarly, treating DIF effects as

residuals of a linear regression model has been mentioned before but in a differ-

ent setting. Robitzsch and Lüdtke (2020) proposed a robust linking approach

based on a robust regression to estimate the mean of the latent ability of the focus

group in the Rasch modeling framework. The unique contribution of the current

study is the automatic process in finding the reference line determined by the

subset of DIF-free items (i.e., anchor items) and extensions to models outside of

the Rasch family.

The rest of this article is organized as follows. First, the test statistic is defined

in a general form. Then, the asymptotic distribution of the proposed test statistic

is derived analytically or approximated using the multiple imputation procedure

(Yang et al., 2012). Lastly, the performance of such a test statistic is assessed by a

Monte Carlo simulation.
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2. A New DIF Detection Method

2.1. Multiple-Group IRT and DIF

Considering a dichotomous response to item j for examinee i from group g,

denoted Y
ðgÞ
ij 2 f0; 1g, i ¼ 1; . . . ;Ng, j ¼ 1; . . . ; J , g ¼ 1; 2. The 2PL model

specifies the probability of endorsing an item (Y
ðgÞ
ij ¼ 1) given the latent ability

yðgÞi as

PfY ðgÞij ¼ 1jyðgÞi ¼ yg ¼
exp a

ðgÞ
j y� b

ðgÞ
j

� �h i
1þ exp a

ðgÞ
j y� b

ðgÞ
j

� �h i ; ð1Þ

in which a
ðgÞ
j and b

ðgÞ
j denote item discrimination and difficulty parameters for

group g. Assume that yð1Þi *Nð0; 1Þ and yð2Þi *Nðm;s2Þ. For the second group,

it is possible to write yð2Þi ¼ s~y
ð2Þ
i þ m, where ~y

ð2Þ
i *Nð0; 1Þ. When expressed in

terms of the standard normal ~y
ð2Þ
i , the transformed discrimination and difficulty

parameters in the second group satisfy ~a
ð2Þ
j ¼ sa

ð2Þ
j and ~b

ð2Þ
j ¼ b

ð2Þ
j
�m
s . Define the

anchor set for “a-DIF” as

A ¼ fj ¼ 1; � � � ; J : a
ð1Þ
j ¼ a

ð2Þ
j ¼

~a
ð2Þ
j

s
g: ð2Þ

Similarly, “b-DIF” is

B ¼ fj ¼ 1; � � � ; J : b
ð1Þ
j ¼ b

ð2Þ
j ¼ ~b

ð2Þ
j sþ mg: ð3Þ

Equations 2 and 3 imply that item parameters of the two groups, when cali-

brated separately, fall on a straight line if items are DIF-free (see also Stocking

& Lord, 1983). Specifically, item discriminations a
ð1Þ
j and ~a

ð2Þ
j fall on a line that

passes through the origin; meanwhile, item difficulties b
ð1Þ
j and ~b

ð2Þ
j also fall on

a line, which has the inverse slope but does not necessarily pass through the

origin. Any deviation of the item from the line indicates DIF. Anchor sets A
and B do not have to be exactly the same. We further discuss how the two

anchor sets can help define DIF effect sizes. In the sequel, we use the term

“separate calibration” to refer to item calibration based on two groups of data

separately using the same measurement model with the standard normal latent

variable.

Let ξð1Þj ¼ ða
ð1Þ
j ; b

ð1Þ
j Þ
0
and ~ξ

ð2Þ
j ¼ ð~a

ð2Þ
j ; ~b

ð2Þ
j Þ

0
. By Equations 2 and 3, we define

item j’s effect size of DIF dj ¼ ðda
j ; d

b
j Þ
0

as the deviation of ðξð1Þj ; ~ξ
ð2Þ
j Þ

0
from the

reference line determined by anchor items. As the slope of the reference line for
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“a-DIF” is the inverse of the slope of the reference line for “b-DIF,” we have the

following two ways of defining the effect size of DIF differing by the specific

item parameters used to locate the respective reference line. First, the effect size

of “a-DIF” and “b-DIF” can be defined as the deviation from the reference line

determined by item parameters aA and bB, respectively. Specifically, item j’s

effect size of “a-DIF” (da
j ) quantifies the deviation of ðað1Þj ; ~a

ð2Þ
j Þ
0

from the line

determined by aA, whereas the item j’s effect size of “b-DIF” (db
j ) quantifies the

deviation of ðbð1Þj ; ~b
ð2Þ
j Þ

0
from the line determined by bB that does not necessarily

pass through the origin. Alternatively, the effect size of “a-DIF” or “b-DIF” can

be defined as the deviation from the reference line determined by both the item

slope and item intercept parameters aA and bB. For example, to find the reference

line for “b-DIF”, the slope can be first obtained by inverting the slope of the

reference line of the “a-DIF”, after which the intercept can be estimated using bB
by fixing the slope. For ease of illustration, we focus on the first way of defining

effect size, and the derivation of the second method is documented in the Online

Supplemental Material. The pros and cons of each method are discussed in the

result section.

Given the current framework of defining DIF, a critical step is to determine

the reference line, which in turn can facilitate quantifying the effect size of DIF

(i.e., deviation from the reference line). Ideally, the line should only be deter-

mined by item parameters of a subset of items which are DIF free, so that the

effect size of the non-DIF item is zero, whereas the effect size of the DIF item is

larger than zero. To illustrate our idea, Figure 1 displays three examples for the

effect size of “a-DIF.” Item discrimination parameters for Group 1 are plotted

against those for Group 2 estimated from separate calibration. The reference line

is estimated using the ordinary least square (OLS) method and the least trimmed

square (LTS) method. Under the null hypothesis (the figure on the left in Fig-

ure 1), both methods consistently reach the same reference line. On the contrary,

when there is a mix of DIF and non-DIF items (see figure on the right in Figure 1),

the two methods are slightly different. In particular, the OLS is sensitive to

“outliers,” which are the DIF items in this case. Consequently, the resulting

reference line tilts toward DIF items and thus creates nonzero effect sizes for

non-DIF items. A more robust method—LTS method—is resistant to the influ-

ence of DIF items, which creates a reference line by only using a subset of the

items (usually � 50%). Therefore, effect sizes of non-DIF items are zero, and

DIF items do not fall on the reference line. For the effect size of DIF, technically

any statistics that can quantify the deviation of the two DIF items from the dashed

line can be utilized as the effect sizes of DIF. Three examples are demonstrated in

the graph including the vertical distance, the perpendicular distance, and the

horizontal distance. In the next section, a general formulation of the test statistic

and three specific examples are provided.
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2.2. A General Formulation of the Test Statistics

In general, the intercept (a) and the slope (b) of the reference line can be

expressed as functions of the item parameters and can be obtained by minimizing

a specific objective function over a and b:

Fðξ; a; bÞ :¼
XJ

j¼1

r τjðξÞ
� �

; ð4Þ

where τj is a function of ξ quantifying the deviation from the line for item j and r
quantifies the contribution of each residual to the objective function (F). If r and

τj are differentiable, the intercept a and slope b of the reference line necessarily

solve the estimating equations

qFðξ; a; bÞ
qða; bÞ ¼

q
XJ

j¼1

r τjðξÞ
� �

qða; bÞ ;

¼
XJ

j¼1

j τjðξÞ
� � qτjðξÞ

qa
;
XJ

j¼1

j τjðξÞ
� � qτjðξÞ

qb

 !
;

¼ 0; ð5Þ

No DIF Items

0.0 0.5 1.0 1.5 2.0 2.5
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0
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1.
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0
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5

OLS

LTS

2 DIF Items

0.0 0.5 1.0 1.5 2.0 2.5

OLS

LTS

aj
(1)

a j(2
)

FIGURE 1. Illustration of three examples of effect sizes of “a-DIF” for item j. The item

parameters from separate calibration are plotted against each other. Two methods of

obtaining the reference line are shown here: (1) OLS ¼ the ordinary least square method

(dotted line) and (2) LTS¼ the least trimmed square method (solid line). Left figure shows

the results, when there is no DIF items, both methods end up with the same reference line.

Right figure shows the results with a mix of DIF and non-DIF items. Dashed lines indicate

different effect sizes of “a-DIF” vertical distance, perpendicular distance, and horizontal

distance. DIF ¼ differential item functioning.
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in which j ¼ qrðτjÞ
qτj

and ξ ¼ ðξð1Þ0 ; ~ξ
ð2Þ0 Þ

0

are the true item parameters in separate

calibration, and ξð1Þ ¼ ðξð1Þ1 ; . . . ; ξð1ÞJ Þ
0
and ~ξ

ð2Þ
¼ ð~ξ

ð2Þ
1 ; . . . ; ~ξ

ð2Þ
J Þ
0
. Then, item j’s

effect size of DIF is a function of ξ, denoted τjðξÞ, which measures the vertical

distance3 of ðξð1Þj ; ~ξ
ð2Þ
j Þ
0
from a reference line determined by (possibly a subset of )

ξ using Equation 6:

τjðξÞ ¼ ðb̂~ξ
ð2Þ
þ âÞ � ξð1Þ; ð6Þ

in which â and b̂ denote the estimated intercept and the slope of the reference

line, respectively. Notice that the intercept of the reference line for “a-DIF” is

zero as it passes through the origin.

Although we use a more general notation using ξ, a-DIF and b-DIF are

investigated separately and contain their own objective functions. In principle,

we can find the two regression lines simultaneously by defining an objective

function that combines the residuals for a and b parameters and minimizing the

function with respect to one slope and one intercept. However, the a and b

parameters typically have different scales. An extreme example is that all the

bjs are close to zero and all the ajs are close to 1. Simply adding up all the residual

terms, which allows the residuals for a and b to equally contribute to the objec-

tive function, is then problematic. As a result, we recommend investigating

a-DIF and b-DIF separately as described in Section 2.1. In particular, our simula-

tion shows that the two-step approach: (1) determining the slope of the reference

line of a-DIF based on the a parameters only and (2) fixing the slope of the

reference line of b-DIF as the inverse of estimated slope for the reference line of

a-DIF and determining the intercept of the reference line of b-DIF using only the

b parameters, performs the best.

2.3. Connection With Conventional DIF Assessment

So far, we have discussed the proposed test statistic. Before introducing the

statistical tests, it is critical to highlight the similarities and differences with the

traditional definition of the DIF effect size. Comparing with the conventional def-

inition of the DIF effect size, the proposed definition of effect size as a deviation

from the reference line obtained by minimizing an objective function is more general

(see Equation 4). The conventional multiple group IRT method sets the latent scale

by the anchor items, which is similar as drawing the reference line passing through a

set of equally weighted and predetermined nonempty anchor sets A0 � A and

B0 � B. In this case, rðτjðξÞÞ ¼ ðτjðξÞÞ2 for all j 2 A0 for a-DIF and for all j 2
B0 for b-DIF. As a comparison, our proposed method finds the subsets of DIF-free

items by using 50% of the item (e.g., LTS method) or by tuning (e.g., bisquare

method), which does not necessarily weight items equally. In this regard, the tradi-

tional methods of using fixed anchors can be viewed as special cases of our general
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definition of estimating equations. Despite the slight difference, we want to highlight

the similarity between the proposed method and the traditional approach. The subset

of DIF-free items, which locates the reference line, are anchor items because the

latent scale is also set by the same subset of the DIF-free items, which further

determines the reference line as a function of the latent scale (i.e., mean and variance

of the second group). It is the engine to locate these anchor items that makes the

difference between the new and the traditional.

With that being said, we still have to impose an additional assumption that the

majority of the items should be DIF-free to ensure that the reference line goes

through the anchor items. The assumption of the majority of the non-DIF items is

implicitly required by the limit of the breakdown point in the robust regression. For

robust regression methods in the current study, we require > 50% of the items are

DIF-free. For example, the upper bound of the breakdown point of LTS in this case

approximately 50% if 50% of the observation is trimmed (see Rousseeuw & Leroy,

1987, Theorem 4 in Chapter 3). Although the bisquare method could potentially

have a larger break down point controlled by the tuning parameter k, without the

50% of the DIF-free item assumption, it still cannot guarantee that the reference line

passes through the non-DIF items. Therefore, the assumption is imposed to ensure

that the solution, even if it exists, is accurate, so that the effect sizes of the DIF-free

items are zero and those for DIF items are nonzero. Violations to this assumption

could result in erroneous inferences under extreme cases. Considering an extreme

scenario where all DIF items perfectly fall on Line 1 and the anchor items fall on

Line 2 as displayed in Figure 2, if more than 50% of the items are DIF items, Line 1

will be the solution that minimizes the objective function even when a robust r is

chosen. As a result, DIF items can be incorrectly identified as non-DIF items and

non-DIF items can be incorrectly identified as DIF-items.

2.4. Sampling Variability

As the item parameters of IRT models are usually estimated using the max-

imum likelihood estimator, the sampling variability of item parameters should be

taken into account to derive the sampling variability of the test statistic. Under

suitable regularity conditions (Birch, 1964), the maximum likelihood estimator4

of item parameters, denoted ξ̂, is asymptotically normal:

ffiffiffiffi
N
p

ξ̂ � ξ
� �

�!d N 0;I�1
� �

; ð7Þ

in which I is the Fisher information matrix5 evaluated at the true item parameter

ξ, and N ¼ N1 þ N2. We assume that N1=N2 ! c, where c > 0 is a constant.

Then, the sampling variability of the test statistic can be derived or approximated

depending on the nature of g. For example, function gðξÞ might be differentiable

explicit functions with closed-form expressions (e.g., OLS), differentiable

Wang et al.

673



implicit functions (e.g., bisquare loss regression), or other nonregular functions

(e.g., LTS). The direct and implicit delta methods can be applied for the first two

cases, respectively. The multiple imputation procedure can be applied to the last

case by simulation. The asymptotic distributions of the test statistics of the three

cases are derived or approximated as follows.

2.4.1. Differentiable explicit functions. If the function, τjð�Þ has nonzero first

derivatives, denoted �τjð�Þ, in some neighborhood of ξ; then, the multivariate

delta method (Bickel & Doksum, 2015, p. 319) implies that τjðξ̂Þ is also asymp-

totically normal: ffiffiffiffi
N
p

τjðξ̂Þ � τjðξÞ
� �

�!d N 0;�τjðξÞI�1�τjðξÞ0
� �

: ð8Þ

For example, the reference line can be obtained by the OLS regression.

Then, τjðξÞ is the perpendicular distance shown in Equation 6 and, thus, can

be expressed as a closed-form function of the item parameters. In particular,

gðξÞ and rτjðξÞ are documented in Online Appendix A for both “a-DIF” and

“b-DIF”.

70% of DIF Items

a j(2
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

line 1

line 2

non−DIF

DIF

aj
(1)

FIGURE 2. Illustration of an extreme example where more than 50% of the items are DIF

items. The item parameters from separate calibration are plotted against each other. Solid

line (Line 1) indicates the reference line obtained by the least trimmed square method,

which goes through the DIF items. Dotted line (Line 2) indicates the correct reference

line, which goes through the anchor items. Gray squares show the DIF items and black

circles show the non-DIF items. DIF ¼ differential item functioning.
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2.4.2. Differentiable implicit functions. If the function τjð�Þ has nonzero first

derivatives but gðξÞ is differentiable implicit functions, then the implicit delta

method can be applied. For example, the robust estimator bisquare loss regres-

sion’s r is defined as

rðeÞ ¼

k2

6
1� ½1� ðe

k
Þ2�3; for jej � k;

k2

6
; for jej >k:

8>>>><
>>>>:

ð9Þ

Then, jðeÞ is given by

jðeÞ ¼
½1� ðe

k
Þ2�2e; for jej � k;

0; for jej > k:

8<
: ð10Þ

Solving the estimating Equation 4 with j specified in Equation 10 involves an

iterative process. Therefore, ða; bÞ ¼ ðg1ðξÞ; g2ðξÞÞ are implicit functions. Fur-

ther,rτjðξÞ can be expressed as a function of
qgðξÞ
qξ , which can be then obtained by

the implicit function theorem (Rudin, 1964, Chapter 9) as follows:

qgðξÞ
qξ
¼ q½g1ðξÞ; g2ðξÞ�

qξ
¼ � qFðξ; g1ðξÞ; g2ðξÞÞ

qða; bÞ

� ��1 qFðξ; g1ðξÞ; g2ðξÞÞ
qξ

: ð11Þ

Finally, the sampling variability of τjðξ̂Þ can be obtained by the multivariate

delta method as in Equation 8. The complete analytical solution is documented in

the Online Appendix B.

From Equation 10, we can see that the magnitude of k controls which item is

contributing to locating the reference line. Thus, items whose residuals (effect

sizes) are small (i.e., � k) function similarly as the anchor items but with

weights. As a result, finding the value of k is critical in locating anchor items,

the reference line, and DIF items. We, therefore, recommend two ways to find the

value of k. First, a relatively simple way is to use a sufficiently small value.

Ideally, the value of k should be close to the smallest true effect sizes of DIF

items to ensure that there is no false inclusion of DIF items in the anchor set in

large samples. Our simulation study has shown that using a simple value of :2, for

example or any k that is smaller than the smallest true effect size, as the sample

size becomes sufficiently large, the performance in detecting DIF items is rea-

sonably well. Alternatively, one can fix k at the median of the absolute residuals

using the OLS method. Given our assumption that the majority of items are DIF-

free, the empirical investigation of k using the median residual is reasonable. Our

simulation study shows that the two methods yield nearly identical results (see
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Figure 1 in the Online Supplemental Material for detail). The data generation and

manipulating factors are documented in Section 3.1.

2.4.3. Nonregular functions. Alternatively, when τjð�Þ is not differentiable or the

analytic derivatives cannot be easily computed, the sampling variation of the test

statistic is approximated using a multiple imputation procedure. For example, the

reference line can be estimated using the LTS—a robust estimator that minimizes

the residual sum of squares using only 50% of the data. Notice that the LTS in the

traditional multiple regression setting has a trimming parameter which ranges

from J=2 to J to decide the breakdown point of the LTS estimator. However, in

the current setting, we did not manipulate the trimming parameter of the LTS. It

is suggested to trim 50% of the observations. To approximate the sampling

variability of the test statistic, multiple sets of plausible item parameters are

drawn from Nðξ̂; ðN Î Þ�1Þ. τjð�Þ is then evaluated at the imputed parameters,

resulting in an approximation to the sampling distribution (Yang et al., 2012).

3. Simulation

The goal of the current simulation study is twofold: (1) to evaluate the finite-

sample performance of the proposed DIF detection method in terms of its Type I

error rate and power of detecting DIF items and (2) to compare its performance

with the state-of-the-art IRT DIF detection method using the likelihood ratio test

(Thissen et al., 1993). Item purification method using iterative backward scheme

is also applied to the current simulation as a benchmark. Specifically, three

examples of effect sizes of DIF corresponding to three ways of estimating the

reference line were investigated under two conditions: (1) the null condition

where all items were DIF-free and (2) the alternative condition where there was

a mix of DIF and non-DIF items. Item parameters were estimated using the R

package mirt (Chalmers, 2012). All other computations were performed in the

statistical computing environment R (R Core Team, 2019).

3.1. Simulation Setup

3.1.1. Manipulating factors. Five factors were manipulated in the current simula-

tion design including (1) the total sample size (N1 þ N2 ¼ 1;000 and 2;000),

(2) the ratio between two groups N1

N2
¼ 1 and 3, (3) the percentage of DIF items

(0%, 10%, and 40%), (4) the effect size of DIF (small and large), and (5) the

direction of DIF (balanced and unbalanced DIF). Together, there were four null

conditions with 0% DIF item. For the alternative conditions, all manipulated

factors were fully crossed with DIF items, which ended up with a total of 32 con-

ditions in total (25 ¼ 32). All varying factors across conditions were selected as a

result of their relevance to the performance of the proposed method. Further-

more, different levels of the factors were chosen for realistic considerations to

Differential Item Functioning

676



improve generalizability. Each of the manipulated factor and its potential impact

on the performance of the proposed DIF test statistic are discussed below.

Particularly, the sample size of each group can influence the standard error

estimates of the item parameter, which in turn can impact the reference line

estimates and, thus, impact the test statistic. Besides, by manipulating the

sample size, the finite sample performance of the proposed test statistic can be

evaluated. Specifically, four levels of the sample size condition are considered,

small equal (N1 ¼ N2 ¼ 500), large equal (N1 ¼ N2 ¼ 1;000), unequal small

(N1 ¼ 750 and N2 ¼ 250), and unequal large (N1 ¼ 1;500 and N2 ¼ 500). The

chosen magnitude of the sample size is typically observed in both the applied

research and the methodology research related to DIF (e.g., Bolt et al., 2004;

Chan et al., 2004; Magis et al., 2010; Rodebaugh et al., 2006; Wang et al., 2012;

Woods et al., 2013). For the sample size ratio between the two groups in com-

parison, it mimics a real DIF detection scenario between different ethnicity

groups in the United States. For example, the two groups in comparison can

be Caucasians versus Hispanic, which usually takes up 60% and 20% of the

population in a testing context (Woods et al., 2013). In addition, the proportion

of DIF items may greatly impact the power and the false alarm rate in detecting

DIF items under the alternative condition where the percentage of DIF items

varies from 10% to 40%. It is anticipated that the higher the percentage is, the

better the performance of the test statistic based on the robust estimator is as

compared with its nonrobust estimator counterparts. By increasing the percent-

age of DIF items, the test statistic based on the regular regression estimator is

likely to suffer from inflated false alarm rate. For the same reason, the effect size

of the DIF is also manipulated. For both a-DIF and b-DIF, two realistic values

were considered with dj ¼ jbð1Þj � b
ð2Þ
j j ¼ ja

ð1Þ
j � a

ð2Þ
j j centered around .4 and .8

to represent a moderate and a large effect size for both a-DIF and b-DIF, which

are typically considered in the DIF simulation study (Langer, 2008; Magis & De

Boeck, 2012; Wang & Yeh, 2003; Woods et al., 2013) and observed in the

applied research context. For each, dj*Uð0:3; 0:4Þ or Uð0:7; 0:9Þ. Lastly, the

direction of the DIF, the sign of the effect size of DIF (dj) representing whether

all DIF items are favoring one group, is manipulated. Two cases are considered,

the unbalanced DIF and balanced DIF. The unbalanced DIF will only, most

likely, favor the reference group, indicating that dj � 0. However, this is not

always the case in practice (Wang & Yeh, 2003). For example, it is unlikely that

all items will favor the male group instead of the female group. Consequently, in

the balanced DIF case, the DIF items can favor any groups, but on average, no

group has an advantage at the test level. In other words, the average of DIF effect

size is 0 (�dj ¼ 0). The balanced DIF case was achieved by setting 50% of the DIF

items favoring one group and the rest favoring the other. We would expect that

test statistics based on the robust estimator will outperform those based on

regular regression methods under the unbalanced DIF case. On the contrary, the
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robust estimator and nonrobust estimator are expected to perform equally well

under the balanced case.

3.1.2. Data generating model. The binary response for item j for examinee i from

group g, denoted Y
ðgÞ
ij 2 f0; 1g, i ¼ 1; . . . ;Ng, j ¼ 1; . . . ; J , g ¼ 1; 2, was gen-

erated from a 2PL model (Birnbaum, 1968; see Equation 1). The total number of

items was fixed at 20. The data generating item parameters are visualized in

Figure 3. These values were randomly sampled from the following distribution:

for each j, a
ð2Þ
j ¼ a

ð1Þ
j *LNð0; 0:32Þ; b

ð2Þ
j ¼ b

ð1Þ
j *Nð0; 1Þ, which resembles the

item parameter distribution from a simulation study (Langer, 2008), which gen-

erates similar item parameters published by Lord and Novick (2008). Under the

alternative condition, the item discrimination parameters of the DIF items for the

second group were increased by an effect size of dj ¼ 0:4 or 0:8. The latent

variables of Groups 1 and 2 were generated from Nð0; 1Þ and Nð0:5; 1:52Þ,
respectively. A total of 1,000 replications for each condition were implemented.

3.1.3. Proposed test statistics. The DIF analysis based on the proposed method

consists the following steps: (1) conducting separate item calibration and obtain-

ing the maximum likelihood estimates of item parameters for the two groups

ξð1Þ ¼ ðað1Þ0 ; bð1Þ
0 Þ0 and ~ξ

ð2Þ
¼ ð~að2Þ0 ; ~b

ð2Þ0 Þ0, (2) regressing ξð1Þ on ~ξ
ð2Þ

and cal-

culating the test statistic τjðξ̂Þ, and (3) conducting hypothesis test using either the

analytical solution or approximated sampling distribution of the test statistic.

For each replicated data set, the aforementioned three methods—the OLS, the

LTS, and the bisquare—were implemented. For each method, separate item

calibration was first conducted using the maximum likelihood estimation with

the Expectation Maximization (EM) algorithm. The convergence criterion for the

EM cycle was set to be 10�4. In the meantime, we adopted the default maximum

number of iterations (NCYCLES ¼ 500). The marginal likelihood function was

approximated by a 61-point equally spaced rectangular quadrature points ranging

from �6 to 6 (theta_lim ¼ c(�6, 6)), quadpts ¼ 61). The Fisher information

matrix I was estimated by the observed information matrix using a central

difference approximation method (SE.type ¼ “Oakes”). The test statistics τjðξÞ
were the vertical distance of ðξð1Þj ; ~ξ

ð2Þ
j Þ
0

from the reference line obtained using

different estimating equations. For the OLS method, the reference line was

determined by minimizing the sum of squares of the vertical distances. The

sampling variation was derived using the multivariate delta method as described

in Section 2.4. The reference line for the LTS method was obtained by minimiz-

ing the sum of squares of the vertical distance using only 50% of the data. The

sampling variability was approximated using the multiple imputation procedure.

Specifically, 1,000 plausible item parameters were drawn from Nðξ̂; ðN Î Þ�1Þ;
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1,000 sets of test statistics were then evaluated at the imputed item parameters,

which approximated the sampling distribution (see Yang et al., 2012, for details).

Lastly, the reference line of the bisquare loss method was obtained by minimiz-

ing the objective function of the bisquare loss function for the vertical residuals.

The sampling distribution was derived using the implicit function theorem as

detailed in the Online Appendix B. For the value of k, we investigate the two

proposed methods to estimate k: (1) fixing k at a smaller value (i.e., 0.2 value

smaller than the true effect size) and (2) fixing the value of k at the median of the

absolute value of residuals of the OLS method. Our simulation study shows that

the two methods yield nearly identical results (see Figure 1 in the Online Supple-

mental Material). For better visualization of the empirical cumulative distribu-

tion function (ECDF), we only include the results using Method 1.

3.1.4. Likelihood ratio test. The IRT LRT test is usually achieved by conducting a

nested model comparison between a compacted model and an augmented model.

The compact model involves the likelihood of the parameter estimates for a given

item j, assuming the measurement invariance, whereas the augmented model

allows for additional item parameters to be freely estimated across the two

groups. Typically, anchor items are required to be constrained to be the same

to link the metric of the latent abilities of the two groups. Depending on how

anchor items are selected, different schemes within the IRT LRT exist (e.g., all-

other method, constant anchor items; iteratively backward and forward; see Kopf

et al., 2015; Wang & Yeh, 2003, for different anchor schemes comparison). For

fair comparison with the proposed method without priori knowledge of anchor

items, the all-other anchor scheme and iteratively backward is employed here.

All-other anchor scheme tests a DIF item by using all items as anchors except the

studied item. In the current analysis, all-other IRT LRT method was achieved by

first fitting the most constrained multiple group IRT model with all item para-

meters constraint to be the same across groups. The mean and variance of the

latent ability of the first group were set to be 0 and 1, and those of the second

group were freely estimated. LRT test was then conducted by freeing one item at

a time with the rest of the items constraint in the multiple group IRT model. This

step was achieved by first fitting the most constrained multiple group IRT model

using the mirt package in R (multipleGroup). DIF analysis was then conducted

using the DIF function with the all-other scheme (scheme ¼ “drop”). The itera-

tively backward method starts with the most constrained multiple group IRT

model and freely estimates the mean and variance of the second group. Then,

the algorithm loops sequentially over each item by treating all other items as

anchors. Then, the algorithm removes items with significant likelihood ratio tests

from the anchor set and tests each item remaining in the anchor set. The above

procedures are repeated until no more DIF items was found. DIF analysis was

conducted using the DIF function with scheme ¼ “drop_sequential.” See the

helping document in mirt for details.
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3.1.5. Evaluation criterion. Rejection rates were used to examine the Type I error

rate and power of detecting DIF items. To evaluate the hypothesis test for each

type of the test statistic under all nominal levels, we examined the ECDFs of one-

tailed p values for testing the null hypothesis (e.g., H0 : τjðaÞ � 0). Ideally, the p

values should be uniformly distributed for non-DIF items. Deviation from the

Uð0; 1Þ indicates incorrect Type I error rate. In contrast, p values for DIF items are

more likely to concentrate in the vicinity of 0 or 1 depending on the sign of the test

statistic being evaluated. ECDFs cannot be plotted with the item purification method,

and thus, rejection rates were calculated using the two-tailed p values for the null

hypothesis H0 : τjðaÞ ¼ 0 at the nominal level 0:05. Bar plots were used to visualize

the results. Results show the comparison between the all-other anchor scheme with

the proposed method using the ECDF curves. Additional bar plots in comparing the

performance of the proposed method and the iteratively backward anchor scheme

are presented in the Online Supplemental Materials.

3.2. Results

3.2.1. 0% DIF item. When there is no DIF item exists, the ECDF of p value

should fall approximately along the diagonal line when the Type I error rate is

controlled. As is shown in Figure 4, which visualizes ECDFs under all sample

size and group size ratio conditions, all proposed methods and also the LRT test

can well control the Type I error rate for both “a-DIF” and “b-DIF.”

3.2.2. 10% DIF items. When the percentage of DIF items is small (10%), the “a-

DIF” and the “b-DIF” behave similarly under all conditions and therefore are

summarized together. Also, as items of the same type (DIF or non-DIF items)

tend to have similar results, only one item of each kind is shown in the figures to

save space. Figure 5 shows the ECDFs of the p value under all conditions with the

balanced condition in Figure 5a and the unbalanced condition in Figure 5b. When

DIF is balanced, the false alarm rate is acceptable by all methods regardless of

the sample size and the effect size condition. However, when the DIF items are

unbalanced (all items are favoring one group) as is shown in Figure 5b, LRT

(dotted line) and OLS (dashed line), though a little bit better than the LRT, can

under reject the null hypothesis. More importantly, increasing the sample size

only worsen the underrejection rate (dotted line and dashed line deviate from the

diagonal line even more under the large sample condition in Figure 5b). The

reason is that as the sample size gets larger, item parameters are estimated more

accurately with less uncertainty, and thus, the reference line is pulled over by DIF

items, which results in the nonzero effect sizes for non-DIF items. Notice that this

does not occur for the balance DIF condition since the DIF effects are cancelled

out by the DIF items and the reference line can be accurately estimated by non-

DIF items. On the contrary, all of our proposed robust test statistics (i.e., LTS and

bisquare) perform well in terms of the rejection rate when the item is DIF-free.
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Finally, power is decent even when the sample size and the effect size are small

for all methods. Increasing the sample size or the effect size can also increase the

power in detecting DIF items.

3.2.3. 40% DIF items. When the percentage of the DIF items is large (40%), “a-

DIF” and “b-DIF” behaves quite differently and will be discussed separately

hereafter. All methods behave similarly as when the percentage of DIF is small
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(see Section 3.2). Figure 6 displays the ECDFs of the p value for “a-DIF” when

the percentage of DIF items is large in the same fashion as in Figure 5. However,

as compared with the 10% DIF condition, larger percentage of DIF items is more

challenging for all methods to maintain the rejection rate at the nominal level for

the non-DIF items. For example, even when DIF is balanced (Figure 6a), the null

hypothesis can be overrejected for the LTS and the bisquare method. The OLS

method and the LRT method can maintain the rejection rate at the nominal level

when the effect size is small but can overreject (OLS) or underreject (LRT) the

null hypothesis when the effect size is large. When the DIF is unbalanced

(Figure 6b), OLS and LRT can severely underreject the null hypothesis, while

LTS and bisquare perform a little bit better. Especially, when the effect size is

large and the sample size is large, bisquare method can maintain the rejection

rate at the nominal level. Lastly, as for the power of detecting DIF, all of our

proposed methods have decent power in detecting DIF items, while LRT still

suffers from lack of decent power in detecting DIF items as compared with our

proposed method.

For b-DIF, when the percentage of DIF items is large, all methods failed to

differentiate the DIF items and the non-DIF items as can be seen from Figure 7,

showing the most difficult condition with unbalanced DIF. With our proposed

method, it is possible that the reference line can go through the DIF items instead

of the non-DIF items with “b-DIF” because both the intercept and the slope have

to be estimated from the item difficulty parameters with sampling variability.

As a simple solution, the second way of quantifying the effect size as illustrated

in Section 2.1 is utilized. We fix the slope of the reference line as the inverse

of the slope of the reference line estimated by the “a-DIF” (i.e., bb�dif ¼
1=ba�dif ¼ 1=g2ðaÞ). Then, we estimate the intercept (a) with the item difficulty

parameters conditional on the fixed b̂ estimated from the item discrimination

parameter. The corresponding standard errors are adjusted with the fixed slope

method to reflect the sampling variability of a. Analytical derivations are pro-

vided in the Online Appendix C. As can be seen in Figure 8 after applying the

proposed solution to “b-DIF,” our proposed methods (the bisquare method and

the LTS method) outperform the LRT test in controlling the rejection rate for

non-DIF items while also maintaining decent power in detecting DIF items.

However, the OLS can have equally inflated false alarm rate as the LRT because

of the influence of the DIF items on the reference line. It is worth to mention that

only the robust method can control the false alarm rate around the nominal level

when the sample size increases. The asymptotic performance of the LRT and the

OLS method gets worse because the effect sizes of non-DIF items are nonzero.

After the adjustment, the behavior for our approach resembles the “a-DIF” under

similar conditions and thus is not repeated here. Compared with the method of

finding reference line of “b-DIF” based on b only, borrowing information from
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a can help estimating the slope more accurately. Thus, we recommend to check

“a-DIF” first and subsequently “b-DIF” using information from a.

3.3. Summary and Discussion

In a nutshell, the rejection rate for the non-DIF items can be well controlled

when there is no DIF items. When there is a mix of DIF and non-DIF items, all

proposed methods have shown decent power in detecting DIF even under the

most difficult condition where the DIF items are unbalanced and the majority of
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FIGURE 7. “b-DIF” empirical cumulative distribution functions of the p value under

the alternative conditions with 40% of unbalanced DIF. (1) equal small: N1 ¼ N2 ¼ 500;

(2) equal large: N1 ¼ N2 ¼ 1;000; (3) unequal small: N1 ¼ 250 and N2 ¼ 750;

(4) unequal small: N1 ¼ 500 and N2 ¼ 1;500. LTS ¼ least trimmed square method;

LRT ¼ likelihood ratio test; bisquare ¼ Tukey’s bisquare method; OLS ¼ ordinary least

square method; DIF ¼ differential item functioning.
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the items are DIF. As for the false alarm rate, a number of factors can influence

the performance of the proposed method including the percentage of DIF

items, the balance or the unbalanced DIF items, the sample size, and the effect

size measure. Under balanced and less percentage of DIF item condition, all

proposed methods can control the false alarm rate and perform equally well if not

better than the LRT test. Under the most challenging condition where the percent-

age of DIF items is large and the unbalanced DIF exists, our robust method (LTS

LTS LRT Bisquare OLS
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FIGURE 8. The “b-DIF” empirical cumulative distribution functions (ECDFs) of the

p value using the modified approach based on both item slope and item intercept under

the alternative conditions with 40% of unbalanced DIF: (1) equal small: N1 ¼ N2 ¼ 500;

(2) equal large: N1 ¼ N2 ¼ 1;000; (3) unequal small: N1 ¼ 250 and N2 ¼ 750;

4) unequal small: N1 ¼ 500 and N2 ¼ 1;500. LTS ¼ least trimmed square method;

LRT ¼ likelihood ratio test; bisquare ¼ Tukey’s bisquare method; OLS ¼ ordinary least

square method.
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and the bisquare method) outperforms the LRT in maintaining the rejection rate at

the nominal level for non-DIF items. Most importantly, the asymptotic perfor-

mance in controlling the rejection rate only applies to our robust method. However,

if the percentage of DIF items is too large (>50%), the robust method eventually

breaks down. The Type I error rate in incorrectly detecting a DIF item can be

inflated and power in detecting a DIF item can be deflated. The reason is that if the

majority of the items are DIF items and somehow align in the same direction,

the reference line could be located by a mixed of DIF and non-DIF items or more

severely by DIF items only. Effect sizes of DIF items can approach zero and thus

result in deflated power. Conversely, the effect size of non-DIF items can be large,

such that the Type I error rate can be inflated.

4. Limitation and Future Direction

The current study proposed an innovative DIF detection method that does not

require a priori specified anchor item. It can be easily implemented in routine

operations of an educational assessment. Our simulation study has shown pro-

mising results in controlling the Type I error rate and power of detecting DIF

items. Even when there is a mix of DIF and non-DIF items, the false alarm rate

can be well controlled using a robust estimator (i.e., the LTS and the bisquare

methods in the current study). If there is balanced DIF, OLS can perform equally

well with the LTS and the bisquare method.

The proposed method is advantageous over previous studies that deal with

anchor contamination issues in several aspects. First of all, the proposed DIF

detection method employs a one-step estimation procedure that is computation-

ally efficient. Unlike the traditional IRT DIF detection method, the current

method does not require repeatedly fitting models. Once item parameters are

calibrated independently for each group, the proposed DIF test statistic can be

conducted simultaneously for all items. In addition, this method can be fairly

easily implemented in any psychometric software with the ability of fitting IRT

models. Moreover, this general definition of the effect size of DIF can be

extended to different IRT models (e.g., graded response model [GRM] Same-

jima, 1969) as well as comparison more than two groups.

The proposed framework of testing DIF can be extended to polytomous IRT

models. Taking the GRM as an example. Separate calibration still indicates that

item parameters (aj or bjc for each c) will fall on a straight line if there is no DIF

items. Then, the proposed method described in Section 3.1 is applicable in the

GRM setting. Specifically, the item discrimination parameter (a) will fall on a

straight line that goes through the origin. Accordingly, reference lines of the item

category location parameter bjc for each response category c will not necessarily

go through the origin. Notice that for all categories c, reference lines have the

same slope, which is the inverse of the slope for the “a-DIF” reference line.

Generalization to testing DIF across multiple groups is also possible. In
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particular, reference lines for “a-DIF” and “b-DIF” still exist but in a g-dimen-

sional space, where g is the number of groups. Similarly, the effect size of DIF

can be any types of statistic that can quantifies the deviation from the line. Then,

an omnibus hypothesis test can be constructed to test whether item functions

differently across groups (i.e., H0 : a
ð1Þ
j ¼ a

ð2Þ
j ¼ . . . ¼ a

ðgÞ
j Þ:

Given that, there are still several issues that need to be cautiously addressed by

future research. First, as is observed that the false alarm rate of incorrectly

detecting a DIF item using nonrobust estimators (i.e., OLS) is large especially

when the percentage of DIF is large and unbalanced. As robust approaches to

obtain the reference line can significantly reduce the false alarm rate (e.g., the

LTS and the bisquare methods), additional robust estimators can be investigated.

Second, one of the disadvantages of the bisquare method is the reliance on the

tuning parameter k, the magnitude of which can influence DIF detection results. Our

investigation has shown that when k is too large, the bisquare method is no different

from the OLS method and thus is no longer robust. However, too small value of k

makes it sensitive to the sampling variability and thus leads to incorrect false alarm

rate. An appropriate value of k is the value that is closer to the true effect size. Here,

we proposed two easy methods: (1) using a relatively small value and (2) using

empirical results from the OLS method to have a rough estimate of k. Although our

simulation results have shown identical results of the two, future research is encour-

aged to explore alternative approaches to select k.

Lastly, given that our current simulation study only investigates the compara-

tive performance with the all-other anchor method. More thorough comparison

with different anchor selection strategies (e.g., item purification and regulariza-

tion methods) should be conducted in the future study.
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3. Other distance can be defined in a similar fashion: For example, the perpen-

dicular distance is given by tjðξÞ ¼ b~ξ
ð2Þ
�ξð1Þþaffiffiffiffiffiffiffiffi
1þb2
p .

4. The item discrimination and difficulty parameters are estimated within each

group, assuming that the latent ability follows a standard normal distribution.

5. The Fisher information matrix is rescaled because of our assumptions on the

sample sizes.
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