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Abstract
The concept of factorial invariance has evolved over the past century; it began in
the 1930s as a criterion for the usefulness of the multiple factor model, but by the
turn of the twenty-first century it had evolved into a form of analysis supporting the
validity of inferences about group differences. In the latter form, factorial invari-
ance becomes isomorphic with the lack of differential item functioning (DIF) in the
literature of item response theory (IRT). This essay traces the evolution of factorial
invariance through the twentieth century, with special attention to its vocabulary
and elaboration. Then it follows the development of DIF analysis for the past fifty
years, concluding that the two kinds of analysis differ in purpose, and therefore de-
tails of procedure, but not in their underlying conceptions. Implications are drawn
about what each tradition can absorb from the other.

Keywords: factorial invariance, factor analysis, differential item functioning, DIF,
item response theory

Introduction

Analyses of factorial invariance in factor analysis and differential item functioning (DIF)
in item response theory (IRT) have separate literatures reflecting their historical development over
the past century and half-century, respectively. Meredith (1993) drew together the ideas of factorial
invariance with the more recent development of DIF under a superordinate heading of measurement
invariance, defined as invariance of the distribution of the observed variables, given latent variables,
over samples or populations. Thissen (2017) pointed out that while it is established that factorial
invariance and a lack of DIF are essentially the same conceptually, in the factor analysis literature
invariance is usually examined by blocks of parameters, with associated labels like metric and scalar
invariance, while DIF analysis proceeds item by item, or variable by variable, grouping parameters
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of different kinds. A purpose of this essay is to illuminate the reasons the two traditions are the
same yet very different. The difference has its source in the very different questions analyses in the
two traditions sought to answer; the sameness arises with the integration of latent variable models
within unifying perspectives. We begin with the older tradition, that of factorial invariance.

Factorial Invariance

The Origins of the Idea of Factorial Invariance

Consideration of factorial invariance is essentially as old as multiple factor analysis itself.
L. L. Thurstone (1935, p. 55) wrote that “It is a fundamental criterion for a valid method of isolat-
ing primary abilities that the weights of the primary abilities for a test must remain invariant when
it is moved from one test battery to another test battery” (emphasis in the original).1 There is a
qualification later on p. 55: “This criterion assumes that the several test batteries are given to the
same population. The primary abilities that define a test in one population should be identical with
the primary abilities which define it in a second population.” The text is a little confusing about the
relationship between what Thurstone was thinking about invariance and distinct populations, but
it is clear that his primary focus was the idea that the relation between observed variables and the
underlying factors should be the same if variables are embedded within different sets. L. L. Thur-
stone (1935, p. 120) subsequently nearly repeats himself, again with emphasized text, “One of the
fundamental requirements of a successful factorial method is that the factorial description of a trait
must remain invariant when the trait is moved from one battery to another which involves the same
common factors or abilities.”2 Two points are clear: One is that the origin of the idea of factorial
invariance was to buttress the validity of the factor analysis model as a representation of the data and
an underlying psychological structure. The second point is that Thurstone looked for this invariance
across different combinations of observed variables.

L. L. Thurstone (1947, pp. 360-376) had an entire chapter on “factorial invariance” in what
amounted to the second edition of his book on factor analysis. On p. 361, Thurstone quotes himself
from the 1935 volume “It is a fundamental criterion . . . ” L. L. Thurstone (1947, p. 360) waves
off invariance across populations (emphasis in the original): “factor loadings cannot be expected
to be invariant from one population to a different population. Any criterion of invariance in factor
analysis assumes that it is applied to analyses on the same population or to equivalent populations.”3

L. L. Thurstone (1947, p. 363) continues to concentrate on invariance across battery composition:
“The factorial composition of a test in a set of primary factors that have been found in a complete
and over-determined simple structure remains invariant when the test is moved to another battery
involving the same common factors and in which there are enough tests to make the simple structure
complete and overdetermined.”

1It happens that the source material for this essay includes the copy of The Vectors of Mind that Thurstone signed
and sent to Harold Hotelling upon publication of the book; that volume is now in the library of the L.L. Thurstone
Psychometric Laboratory. The book includes (presumably Hotelling’s) pencilled hand-written marginalia. Hotelling’s
marginal comment on these lines is “Is this possible?” That suggests that invariance will be a topic of research going
forward.

2Hotelling’s marginal comment on p. 120 is “impossible.” Possibly Hotelling was thinking of his method of principal
components analysis (Hotelling, 1933), in which any change in the set of variables analyzed would change all the weights.

3Thurstone footnotes this with “First ed., p. 55”, referring to the lines quoted above from his 1935 The Vectors of
Mind.
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While Thurstone concentrated on invariance over the composition of test batteries,
Thomson (1950), elaborating on work by Thomson and Ledermann (1939), was more concerned
with invariance over populations; they expressed populations mathematically as selection of subsets
of a super population. Thomson (1950, p. 292ff) conceded that univariate selection would yield, as
L. L. Thurstone (1947) had previously claimed, invariant factor structures, but then Thomson (1950,
p, 294) claimed that multivariate selection may yield different results. It was a rare difference of
opinion between Thurstone and Thomson,4 that Thurstone thought more about test-battery com-
position and Thomson was more concerned with population differences, which Thurstone believed
to be unimportant. Both, however, considered invariance a criterion for the validity of underlying
factors.

The Evolution of the Idea of Factorial Invariance: The Mid-twentieth Century

L. L. Thurstone (1947, pp. 363ff) has a section on “types of factorial invariance” which
states that (p. 363) “The simplest form of factorial invariance concerns the metric invariance of
the factor matrix solution.” He clarified that this means “the numerical values of the factor matrix
solution are invariant”, and discussed the need for the same reference axes for this to be observed.
In the 1940s, the only meaning of the term factor analysis was what is now called exploratory
factor analysis, and for all practical purposes, the only parameters were the factor loadings in the
“factor matrix solution.” L. L. Thurstone (1947, pp. 364) wrote “A different type of factorial
invariance appears in relation to the selection of subjects to whom a test battery is given. This is
configurational invariance.” Thurstone elaborated on p. 365 that “configurational invariance is
a far more important consideration in factor analysis than the invariance of the factor loadings.”
Thurstone took it as given that the numerical values of the loadings, and the correlations among the
factors, would differ somewhat between populations; he wanted the latent variables, as defined by
their salient indicators, to be the same.

In the 1950s, others worked out methods of factor rotation to congruence to show the extent
to which factor solutions obtained from different populations were invariant; rotational methods by
Ahmavaara (1954) and Kaiser (1958) became available for use, and focus shifted from the question
of invariance over battery composition to invariance between groups. And at some point Thur-
stone’s term configurational lost some of its syllables: Sharpe and Peterson (1971, p.260) used the
shorter term configural invariance to mean “factor identities are fundamentally the same”; Guilford,
Guilford, and Hoepfner (1971, p. 40) also used “configural invariance” in a similar sense. It is not
clear when or how between 1947 and 1971 the word was simplified.

A psychometric literature grew up on how selection could produce (sub-)populations with
different covariance or factor structures; a review of that would be an excursion onto a sidetrack at
this point. Meredith (1964) assembled and expanded results on invariance of loadings over selected
populations, and the consequent invariance of the coefficients for the computation of factor score
estimates.

A major step in the history of factorial invariance took place when Karl Jöreskog developed
what has come to be called confirmatory factor analysis (CFA). Jöreskog (1971, p. 409) described
for the first time multi-group factor analysis, writing that the “method is capable of dealing with
any degree of invariance, from the one extreme, where nothing is invariant, to the other extreme,

4T. G. Thurstone (1980) remarked in a presentation on the history of psychometrics that “Godfrey Thomson was
Leon’s best friend” (“Leon” being the way Thelma Thurstone referred to Louis Leon Thurstone).
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where everything is invariant.” Jöreskog used no explicit vocabulary to indicate whether particular
parameters (loadings, unique variances, factor correlations) were invariant. The algorithms and
software he described could test the equality across groups of any combinations of parameters,
using the likelihood-ratio (LR) test statistics that came along with maximum likelihood estimation
for the factor model.

Jöreskog (1971) did suggest a sequence of hypothesis tests, beginning with a test that the
covariance matrices are (all) equal, then whether the same number of (completely unrestricted)
factors could be used for all populations, then (on p. 423) an “invariant unspecified (unrestricted)
factor pattern” with each factor identified by one of the observed variables. This latter is not as
restrictive as Thurstone’s configurational invariance, which was for simple structure.5 Jöreskog’s
(1972, p. 424) next hypothesis was basically Thurstone’s metric invariance, wherein the loadings
were equal across groups for an independent clusters solution for a three-factor example in “a non-
overlapping group structure, where the first three tests are loaded on the first factor only, the next
three tests on the second factor only and the last three tests on the third factor only.” Jöreskog’s
next test was the hypothesis that the unique variances were also equal across groups, and then a test
of the equality of the factor covariance matrices. Following his proposed sequence of model tests
with an empirical example, Jöreskog (1971, p. 425) arrived at “two alternative descriptions of the
data. One is that the whole factor structure is invariant over populations with a three-factor solution
of a fairly complex form. The other is to represent the tests in each population by three factors
of a particularly simple form, but these factors have different variance-covariance matrices in the
different populations.”

An immediate next step followed when Sörbom (1974) expanded upon Jöreskog’s work
with the estimation of the group means and variance covariance matrices, thus separating group
differences in factor means, variances, and covariances from invariance (or the lack of it) in the
parameters relating the variables to the factors (the loadings). Sörbom (1974, p. 230) wrote an
elaborated factor model as

xg = µ+Λgξg +ϵg , (1)

where xg is a vector of observations from group g, µ is a vector representing the “origin of the
measurements”, Λg is the matrix of factor loadings, ξg is the vector of values of the common
factors, and ϵg is the random vector of unique factors. Additional parameters were θg and Φg, the
vector of means and the covariance matrix of ξg, and Ψ2

g, a diagonal matrix of the variances of the
unique factors.

Sörbom (1974, p. 229-230) wrote about “factorial invariance in various degrees”, distin-
guishing among

“1. Parameters differentiating the measurements. The vector µ indicates the level of the
measurements, i.e. given ξg = 0 , the expected values of the measurements equal µ. The ith row
of Λg, gives the regression of xi on the common factors and the ith diagonal element of Ψ2

g, is the
corresponding residual variance.

“2. Parameters describing the factor space. The matrix Φg, is the variance-covariance

5L. L. Thurstone (1947, p. 181) wrote that “When a factor matrix reveals one or more zeros in each row, we can
infer that each of the tests does not involve all the common factors that are required to account for the intercorrelations of
the battery as a whole. This is the principal characteristic of simple structure.” A commonly hypothesized special case of
simple structure is an independent clusters solution, in which each test has a non-zero loading on only one of the several
factors.
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matrix of the common factors and θ, is their mean vector.”6

Sörbom (1974, p. 234) followed Meredith (1964) and Joreskog (1971) by using data from
Holzinger and Swineford (1939) for his example in which he computed estimates of the factor
means for four groups for one of Jöreskog’s invariance models.

Jöreskog and Sörbom’s models and methods were implemented in a series of increasingly
general computer programs culminating in LISREL (Jöreskog & Van Thillo, 1972; Jöreskog &
Sörbom, 1974), which became for a time the de facto standard software used to investigate factorial
invariance.

The Modern Era: The Vocabulary of Factorial Invariance

In the seminal article by Meredith (1993, pp. 527-528), “measurement invariance” is
“F(x|w,v) = F(x|w) for all (x,w,v)” (x is observed, w is latent, v is group selection); he attributes
this definition to Mellenbergh (1989).7 With “F(·)” defined as “the (cumulative) distribution func-
tion of the argument” this covers all models for categorical or continuous data. On p. 530 of the
same article “weak measurement invariance" is “E(x|w,v) = E(x|w)” and “Σ(x|w,v) = Σ(x|w).”

Meredith (1993) used somewhat different notation for the factor analysis model than equa-
tion 1 above from Sörbom’s (1974) article:

x = α+Λz+u , (2)

where x is a vector of observations, α represents what are now most often called the intercept
parameters, Λ is the matrix of factor loadings, z is the vector of values of the common factors, and
u is the random vector of unique factors plus measurement error. This re-notation permits µ and Σ
to be used for the mean and covariance matrix for the observations. The vector of means and the
covariance matrix of the factors are ξ and Φ. The covariance matrix of u is Ψ.

Writing about factorial invariance, and using the subscript s to indicate the group or popu-
lation for parameters that differ between them,8 Meredith (1993, pp. 527-528) says X is “strongly
factorially invariant" if

µs = α+Λξs (3)

and
Σs = ΛΦsΛ′+Ψs , (4)

and strictly factorial invariant if equation 3 holds and

Σs = ΛΦsΛ′+Ψ . (5)

Meredith (1993, p. 538) then summarizes the relationship between factorial invariance and the new
concept of measurement invariance as follows: “If Xis strictly factorial invariant with respect to
selection on V , X is almost certainly weakly measurement invariant with respect to V .”

Meredith (1993, p. 541) offered a list of possible outcomes of the analysis of factorial
invariance in which successive steps removed differences specified in previous steps one by one,

6As will become clear in a subsequent section, the distinction between the first category of parameters associated with
the variables and the second category of parameters of the population distributions is crucial in IRT-based DIF analysis.

7Mellenbergh (1989) did not use the phrase measurement invariance; the definition was for a lack of item bias, an
earlier term for DIF.

8Presumably the s subscript alludes to the tradition that considers multiple groups or populations to be selections
from some super population.
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by adding equality constraints: “Consider simultaneous factor model fitting to disjoint populations
which, we insist, must involve modeling means as well as dispersion matrices. The following cases
can arise.

I. Different factor pattern matrices and different means and variances of the unique
(specific plus error) factors over groups.

II. Different means and variances of the unique factors over groups.

III. Strong factorial invariance, i.e., different unique factor variances over groups.

IV. Strict factorial invariance.”

Note that cases I and II had no names.
Table 1 lists some of the vocabulary used to describe analyses of factorial invariance that has

grown from those seeds. When the only factor analysis was what is now called exploratory factor
analysis, L. L. Thurstone (1947) had distinguished between configurational and metric invariance;
the former referred to the same simple structure across groups, and the latter to the same loadings.

Widaman and Reise (1997) discuss configural invariance (p. 292), attributing the term to
Horn, McArdle, and Mason (1983) although it is certainly derivative of Thurstone’s (1947) con-
figurational, with the term shortened to configural by the early 1970s. Widaman and Reise (1997,
p. 293) wrote “Meredith (1993) distinguished several forms of factorial invariance, forms that he
termed weak, strong, and strict factorial invariance.9 For Widaman and Reise (p. 293), weak facto-
rial invariance has equal loading matrices across groups. Then Widaman and Reise (p. 294) have
strong factorial invariance, constraining the loadings and intercepts of the measured variables; that
corresponds with Meredith’s definition (p. 534) of “strongly factorial invariant.” To obtain strict
factorial invariance, Widaman and Reise (p. 295) add the constraint that the unique factor variances
are equal across groups.10 Widaman and Reise go on to say “All these are forms of metric invari-
ance” which is no doubt true in a semantic sense, but that deviates from the more specific use of the
term metric invariance by Thurstone (1947).

Going forward in time, the terms weak and strong have been used with different meanings,
sometimes both meaning the same model for different authors. Setting those terms aside, there has
been convergence on the use of configural for the same factor pattern, metric for equal loadings
across groups, scalar for equal intercepts as well, strict if all parameters of a CFA model are equal
across groups.

There have been uses other than Meredith’s (1993) of the term measurement invariance in
the factor analysis literature. Horn and McArdle (1992, p. 117) used it with a verbal definition,
“the same attribute is measured in the individuals within groups.” Writing in a similar vein, Reise,
Widaman, and Pugh (1993, p. 552) wrote “To compare groups of individuals with regard to their
level on a trait, or to investigate whether trait-level scores have differential correlates across groups,
one must assume that the numerical values under consideration are on the same measurement scale
(Drasgow, 1984, 1987). That is, one must assume that the test has ‘measurement invariance’ across
groups.” Reise et al. (1993, p. 552) did not cite Meredith, and it seems their use of the term “mea-
surement invariance” was independent, although they also used it to encompass both the analysis

9Meredith (1993) did not use the modifier weak for factorial invariance, except by implication of the use of strong
that there must be some meaning to weak.

10All these cases (configural, weak by implication after Meredith’s use of “strong”, strong, and strict leave the group
factor means and variance-covariance matrices unconstrained, as we shall see would be the case in IRT-based DIF analy-
sis.
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Source Same zeroes in
Λ

Equal Λ Also Equal α Also Equal Ψ

L. L. Thurstone
(1947, pp.
363ff)

configurational
invariance

metric
invariance

Horn and
McArdle (1992,
pp. 123ff)

configural
invariance

metric
invariance

Meredith
(1993, p. 534)

(unnamed
case II)

strong factorial
invariance

strict factorial
invariance

Widaman and
Reise (1997,

configural
invariance

weak factorial
invariance

strong factorial
invariance

strict factorial
invariance

pp. 292-295) “All these are forms of metric invariance”

Steenkamp and
Baumgartner
(1998, pp. 80-
81)

configural
invariance

metric
invariance

scalar
invariance

error variance
invariance

Vandenberg and
Lance (2000,
pp. 12-13)

configural or
weak invariance

metric or strong
invariance

scalar
invariance

“invariant
uniquenesses”

Millsap and
Meredith
(2007, p. 133-
134)

configural
invariance

metric
invariance
or weak facto-
rial invariance

scalar
invariance or
strong factorial
invariance

strict factorial
invariance

Putnick and
Bornstein
(2016, p. 74)

configural
invariance

metric
invariance or
weak factorial
invariance

scalar
invariance or
strong factorial
invariance

residual
invariance or
strict factorial
invariance

Table 1

Vocabulary used by various authors for some patterns of invariance, organized by columns
representing model matrices in equations 3-5.
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of factorial invariance and IRT-based DIF analysis. That article emphasized the consideration of
partial invariance; that brings the analysis of factorial invariance closer to DIF analysis.

Vandenberg and Lance (2000) used structural equations modeling as the basis of their use of
the term measurement invariance, distinguishing between that (subsuming the tests of “configural”,
“metric”, “scalar”, and “uniquenesses” invariance), and “structural invariance”; the latter included
the factor variances, covariances, and means. So Vandenberg and Lance (2000, pp. 12-13) added
tests of equality across groups of factor variances, covariances, and means as three more steps/tests
after the by then canonical tests of configural, metric, scalar, and strict invariance. This separa-
tion actually goes back to Sörbom’s original work with group means and covariance matrices, and
language commonly used for structural equations models: The parts of the model that link latent
variables to observed variables are called the measurement model and the parts that link latent vari-
ables to each other (either through correlation or regression) make up the structural model.

Partial Factorial Invariance

Putnick and Bornstein (2016) have a section on partial invariance, describing models in
which some, but not all, parameters in a block are invariant across groups. In subsequent sections
we will see that partial invariance is an essential part of the conceptualization of DIF. It has rarely
been mentioned in the factor analysis literature, but for item response theorists partial invariance
models are the essence of DIF analysis, intended to identify and then remove the observed variables
(items) that are not invariant; more on that in a subsequent section. According to Van De Schoot,
Schmidt, De Beuckelaer, Lek, and Zondervan-Zwijnenburg (2015, p. 1), Byrne, Shavelson, and
Muthén (1989) are the origin of the term “partial measurement invariance”; Byrne et al. (1989) did
not use the kind of vocabulary summarized in Table 1, but they did discuss the possibility of partial
invariance.

Reise et al. (1993, p. 555) considered “full measurement invariance” to hold if the factor
loading matrices are equal across groups, and “partial measurement invariance” (p. 556) if some,
but not all, of the loadings are equal across groups. Reise et al. (1993) compared CFA results ob-
tained with that conception of full and partial “measurement invariance” with IRT-based DIF anal-
ysis results, for which they defined “full measurement invariance” (p. 561) as all item parameters
(slopes and thresholds/intercepts) equal across groups, with only the group latent means different,
and “partial measurement invariance” (p. 561) as models with some items’ parameters equal across
groups11 and some not equal. The presentation by Reise et al. (1993) was not completely parallel
between the CFA and IRT analyses, because the intercept parameters and means were omitted from
consideration in the analyses of factorial invariance.

Widaman and Reise (1997, p. 299) also wrote briefly about partial factorial invariance; they
said that “many experts on structural modeling argue that partial metric factorial invariance models
are not viable models for demonstrating that true ARF-invariant latent variables are identified.”12

Unlike Widaman and Reise (1997, p. 299), Steenkamp and Baumgartner (1998, pp. 80-81) mention
partial invariance without negative connotation. Vandenberg and Lance (2000) also wrote about
partial invariance.

11The items with equal parameters across groups are those that form the “anchor.”
12Widaman and Reise (1997, p. 291) define “ARF invariance” as “invariance under appropriate rescaling factors”,

meaning “essential relations among the group means are invariant under the different rescalings.”
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Contemporary Syntheses

Putnick and Bornstein (2016, p. 73) describe a “ladder” of factorial invariance derived from
“landmark papers, Widaman and Reiss (1997) and Vandenberg and Lance (2000), [that] synthesized
the measurement invariance literature, delineated the ladder-like approach to measurement invari-
ance testing, and provided researchers with step-by-step guides to conducting invariance tests.”
Their ladder was configural invariance, metric invariance (equal loading matrices), scalar invari-
ance meaning the intercepts are also equal; then residual invariance. This current “state of the art”
(Putnick & Bornstein, 2016, p. 73) is largely due to the synthesis by Millsap and Meredith (2007,
p. 133-134):

If configural invariance is tenable, the next step is to constrain the factor pattern ma-
trices to invariance . . . , a condition known as weak factorial invariance (Widaman &
Reise, 1997) or metric invariance (Horn & McArdle, 1992; L. L. Thurstone, 1947).
Weak factorial invariance implies that any systematic group differences in the covari-
ances among the measured variables are due to the common factors, rather than other
sources of association. If weak factorial invariance is retained, the measurement inter-
cepts are constrained to invariance next . . . , yielding strong factorial invariance (Mered-
ith, 1993) or scalar invariance (Steenkamp & Baumgartner, 1998). Strong factorial
invariance implies that any systematic group differences in either the means or the co-
variances among the measured variables are due to the common factors. The final step
imposes invariance on the unique factor variances . . . , leading to strict factorial invari-
ance (Meredith, 1993). Strict factorial invariance implies that any systematic group
differences in the means, variances, or covariances for the measured variables are due
to the common factors, rather than group differences in factor structure. For example,
systematic group differences in the means on the measured variables are due to dif-
ferences in the factor means. Strict factorial invariance is useful if present because it
clarifies the interpretation of any group comparisons on observed means or covariance
structures.

Recent Extensions

Van De Schoot et al. (2015, p. 1) wrote “As proposed by Mellenbergh (1989), “measure-
ment invariance” (MI) requires that the association between the items (or test scores) and the latent
factors (or latent traits) of individuals should not depend on group membership or measurement
occasion (i.e., time). In other words, if item scores are (approximately) multivariate normally dis-
tributed, conditional on the latent factor scores, the expected values, the covariances between items,
and the unexplained variance unrelated to the latent factors should be equal across groups.” Van
De Schoot et al. (2015, p. 1) subsequently describe

A relatively new research avenue in the MI literature deals with the use of Bayesian
structural equation models (BSEM) to relax strict forms of MI (see Muthén and As-
parouhov, 2012). In particular, exact zero constraints on the cross-group differences
between all relevant measurement parameters (e.g., factor loadings and item intercepts)
are substituted by “approximate” zero constraints. Instead of forcing item intercepts to
be exactly equal across groups, a substantive prior distribution (around zero) is used
to bring the parameters closer to one another, while allowing for some “wiggle room.”
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If there are many small differences between the groups in terms of intercepts or factor
loadings, approximate MI seeks a balance between adherence to the requirements of
MI, making comparisons possible, and obtaining a well-fitting model (i.e., a model that
is more realistic given the data at hand). When the classical MI tests do not hold given
the data, approximate MI represents a promising (and more realistic) alternative; the
cross-group differences between all relevant measurement parameters are “hopefully”
close enough to zero to allow making meaningful latent factor mean comparisons.13

Thus, by the first part of the twenty-first century, the analysis of factorial invariance has
evolved from a test of the validity of the factor model (which it was for Thurstone and Thomson)
into analysis supporting the validity of inferences about group differences. That brings the purpose
of the analysis of factorial invariance closer to that of the analysis of differential item functioning in
the IRT literature.

Differential Item Functioning in IRT

While DIF analysis within an IRT framework and the analysis of factorial invariance are
now considered in some senses the same within a superordinate concept of measurement invariance,
the two forms of analysis have very different origins and purposes. The following sections trace
the development of DIF analysis to its convergence with factorial invariance, and then provide
reflections on that convergence.

The Origins of DIF Analysis

In his seminal chapter on latent structure analysis, Lazarsfeld (1950, p. 367) wrote “We
shall now call a pure test of a continuum x an aggregate of items which has the following properties:
All interrelationships between the items should be accounted for by the way in which each item
alone is related to the latent continuum.” Then later on that same page he continued “we would
want our analysis to clarify what is meant by group factors in itemized tests, what is meant by
biased questions, and so on. It will turn out that all of that can be achieved by comparing an actual
aggregate of items with the special case of a pure test.”

It would be more than twenty-five years before what was to become IRT would identify
“biased questions,” but that time would come. The incorporation of the study of “biased questions”
into IRT can be traced to a conference presentation by Lord (1977); in his subsequent expansion of
that presentation, Lord (1980, p. 212) wrote with characteristic succinctness “It is frequently found
that certain disadvantaged groups score poorly on certain published cognitive tests. This raised the
question of whether the test items may be unfair or biased against these groups. . . . If . . . an item has
a different item response function for one group than for another, it is clear that item is biased. If
the bias is substantial, the item should be omitted from the test."

So DIF analysis originated in educational measurement, with the goal of detecting and
removing “biased” items, to reduce overall unfairness against some demographic group(s). It has
become standard practice to include DIF detection in item analysis for any kind of test construction
(Edwards & Edelen, 2009). This is in contrast to the origins of factorial invariance that involved
the theoretical question of whether sampling a set of variables, or a subgroup from a population,
would affect the factor structure, or more generally the validity of the factor analysis model. A

13This idea will reappear subsequently when regularized DIF analysis is discussed.



FACTORIAL INVARIANCE AND DIF 11

consequence of this difference in motivation is that, in the beginning, DIF analysis was primarily
about the difficulty of test items (on tests of proficiency or achievement; that is analogous to item
endorsement rates on personality or social questionnaires, and the variables’ intercepts in factor
analysis), whereas the beginnings of the study of factorial invariance were exclusively about the
relationships of the observed variables to the underlying factors (the loadings). Consideration of
factor-analytic intercept parameters, the equivalent of item difficulty, did not arise in conceptions of
factorial invariance until the 1970s.

From Item Bias to DIF

Before Lord (1977, 1980) brought the topic within the purview of IRT, item bias had been
studied using simpler statistical procedures. Angoff and Ford (1973) plotted the ETS delta 14 as-
sociated with the the inverse normal transformation of the percent correct on SAT items for Black
and White students, and noted that outliers on that scatterplot probably represented item bias. Lord
(1977) objected that the inverse normal transformation of the percent correct was a poor indicator
of item difficulty, and suggested the use of the IRT difficulty parameter instead. Angoff and Ford
(1973) and Lord (1977, 1980) used data from the SAT, and Black and White examinees as groups.
For the running example in this section, data from a spelling test15 administered to college under-
graduates will be used. The item parameters, including the IRT difficulty parameter b, were obtained
by fitting the 2PL IRT model to a subset of 76 items of the 100 item spelling test,16 using data from
1000 examinees. This yields the scatterplot shown in Figure 1, with the difficulty (bFemales) of the
items for female examinees plotted against difficulty (bMales) of the items for male examinees. Items
represented by points above and to the left of the diagonal reference line are relatively more difficult
for female examines to spell, while items with points below and to the right of that line are more
difficult for males. Difficulty, here, reflects the probability the word will be spelled incorrectly, and
b is a parameter of the two-parameter logistic (2PL) IRT model.

The Two-Parameter Logistic (2PL) IRT Model

The 2PL IRT model (Birnbaum, 1968), describes the probability of a correct item response
as a function of item parameters (ai and bi for each item i), and θ , the latent variable measured
by the test, as follows: The conditional probability, or trace line, of a correct or positive response
u = 1, as a function of the latent variable being measured (θ ) is

T (ui = 1|θ) = 1
1+ exp[−ai(θ −bi)]

. (6)

14ETS delta is a linear transformation of the standard score scale to have a mean of 13 and a standard deviation of
four. It was used by item analysts at Educational Testing Service as a kind of lingua franca across tests scored on different
scales.

15The purpose and content of the spelling test are described by Bock, Zimowski, and Thissen (1997).
16As described by Bock et al. (1997), the words on the spelling test were chosen using random sampling from a

long list of words in the English language. That created an explicitly item-sampled test for the Bock et al. (1997) study
of domain sampling, but it had the property that a number of the items performed poorly: They were too easy or too
difficult, or not particularly discriminating, for the college student sample. To better represent the performance of the DIF
procedures discussed here, 24 of the 100 original spelling items have been set aside, leaving a 76-item test. Angoff and
Ford (1973) and Lord (1977, 1980) used all of the SAT items; the items in their examples were already highly selected
for their psychometric properties.
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Figure 1

2PL difficulty (bFemales) parameters of the spelling items for female examinees plotted against diffi-
culty (bMales) parameters of the items for male examinees. Items represented by points above and to
the left of the diagonal principal axis reference line are relatively more difficult for female examines
to spell, while items with points below and to the right of that line are more difficult for males. The
2PL trace lines for the male (blue) and female (magenta) examinees for spelling the words shrapnel
and velveteen are shown in the inset boxes attached to the points for those words, upper left and
lower right.
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The thresholds bi are the values on the θ scale at which a respondent has a 50% chance of responding
correctly or positively; the slope ai is the regression coefficient of the log odds of a correct or positive
response regressed on θ .17 The latent variable θ is usually standardized in one of the groups (in this
case the males); that sets the scale for the parameters a and b.

Early Methods of DIF Detection

DIF analysis rests on the following idea: “If . . . an item has a different item response func-
tion for one group than for another, it is clear that the item is biased” (Lord, 1980, p. 212). Inset
panels in Figure 1 show the trace lines (equation 6) for the reference group (here, male, blue) and
the focal group (female, magenta) for spelling the words shrapnel (upper left) and velveteen (lower
right). The differences between the pairs of trace lines are one indicator of the effect size for DIF
(Steinberg & Thissen, 1996); another effect size is the difference between the b parameters them-
selves. The inset graphics in Figure 1 provide meaning for those two points on the scatterplot;
points along the diagonal reference line correspond to trace lines that are effectively coincident for
the males and females.

In the context of parametric IRT, there is a one to one relation between item response func-
tions (Lord’s term for the trace lines T (ui = 1|θ)) and the item parameters, so the question of
whether “an item has a different item response function for one group than for another” is answered
with a statistical test of the equality of the item’s parameters for one group and those for the other.
Such a statistical test has two elements: One is some mechanism to determine, and “correct for,”
whatever overall differences exist between the groups on the latent variable measured by the test
or scale. That is usually done by designating some set of items as the anchor, by analogy with
the anchor in test linking designs. While the best way to designate the anchor is on some theoreti-
cal grounds (Thissen, Steinberg, & Wainer, 1993), that is rarely done in practice, and much of the
development of IRT-based DIF analysis involved selection of the anchor item set.

The second element is the statistical test itself. Wald tests and LR tests of the significance
of the difference between parameters for the focal and reference groups have been used most often;
score (or Lagrange multiplier) tests have also been suggested (e.g., by Schneider, Strobl, Zeileis,
and Debelak (2022) and Zimmer, Draxler, and Debelak (2022)).

Lord (1977, 1980) used different approaches to (effectively) select an anchor item set: Lord
(1977) used the principal axis of a plot like the one shown in Figure 1 to determine the linear
transformation that placed the item parameters for the two groups on the same scale after they had
been estimated separately, then he used Wald tests to evaluate the significance of the difference
between item parameters for the two groups. After finding that 46 of the 85 items were significantly
different at the α = 0.05 level of significance, Lord re-estimated the item parameters for the two
groups using only the subset of 32 items that were not (preliminarily) different at the α = 0.15 level
to obtain estimates of θ uncontaminated with any item bias. Then he used those values of θ as
fixed to estimate the parameters of all 85 items on the same scale, and again used Wald tests of
significance, finding 38 of the 85 items to have parameters significantly different between groups.

In a substantial revision of that original work, Lord (1980, pp. 217ff) proposed somewhat
different approaches. Instead of separately calibrating the items in the two groups, standardizing θ

17All of the methods of DIF analysis to be described in this and subsequent sections can be generalized to other
parametric IRT models, with different parameterizations, more parameters, or more response categories (see van der
Linden (2021)). However, the central principles remain the same, so the focus here will remain on the parameters of the
2PL model.
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in each group to set the units of the scale, the alternative idea was “standardizing on the b”: fixing
the mean and standard deviation of the b parameters to be zero and one, and counting on that to
place the item parameters of both groups on the same scale. Wald tests could be used to test the
between group difference of the parameters for each item. Lord (1980, p. 220) then suggested
the idea of “purification of the test”: If many items were found to be biased in the preliminary
analysis, a second analysis could be based on fixed values of θ computed using the items remaining
after removing those with significantly different response functions in the preliminary analysis. Re-
estimated item parameters based on those fixed values of θ were then tested for between-groups
significance. So the “purification” of the test was to (effectively) use as the anchor the subset of
items with the most similar parameters between groups.

The conception of IRT in Lord’s (1980) volume, assembling and revising his seminal re-
search of the 1970s, did not include reference to a population distribution for the latent variable
θ ; the same was true of the software LOGIST (Wood, Wingersky, & Lord, 1976) that was used to
do the computations. A consequence was that item parameters could only be estimated on a scale
defined for a single group at a time, and procedures such as those described above were necessary
to put the parameters “on the same scale” (Lord, 1977, p. 25). The slope (A) and the intercept (B)
of the linear transformation of the independently-estimated focal group parameters to the reference
group scale are the slope and intercept of the reference (principal axis) line illustrated in Figure 1.

However, there is a population distribution for θ for each group in a complete conceptu-
alization of the IRT model; those population distributions are often characterized as normal with
mean µ and standard deviation σ . Kolen and Brennan (2004, p. 164) summarize the relation-
ships between the rescaling parameters A and B and the means and standard deviations of θ and
b-parameter distributions as follows, with (here) the subscripts R and F referring to reference and
focal groups:

A =
σ(bF)

σ(bR)
, (7)

=
µ(bF)

µ(bR)
, (8)

=
σ(θF)

σ(θR)
, (9)

B = µ(bF)−Aµ(bR) , and (10)

= µ(θF)−Aµ(θR) . (11)

So one way to determine the rescaling coefficients A and B is to determine the slope and intercept of
the principal axis in a plot such as Figure 1, perhaps even graphically; Lord (1977) did that. Another
way is to use the relations involving the bs in the equations above: Kolen and Brennan (2004, p.
167) refer to using equations 7 and 10 as the mean/sigma method (Marco, 1977) and 8 and 10 as
the mean-mean method (Loyd & Hoover, 1980). From the mid-1980s onward those methods were
mostly superseded in both DIF analysis and IRT test-linking by a method proposed by Stocking
and Lord (1983), effectively choosing A and B to minimize the squared difference between the test
characteristic curves (TCCs—the expected summed score as a function of θ ).

However, equations 9 and 11 make it clear that another way to have the item parameters on
the same scale is to directly estimate the mean and standard deviation of the distribution of θ for
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the focal group relative to that of the reference group along with the item parameters in a process
called concurrent calibration. If the reference group population distribution has µ = 0 and σ = 1,
the values of B and A are the mean and standard deviation of the focal group. Then there is no need
for an explicit linear transformation of the item parameters for one group onto the scale of the other,
because in concurrent calibration all of the parameters are already estimated on the same scale.

Lord (1977, 1980) used Wald tests to evaluate the statistical significance of the difference
between item parameters for the focal and reference groups; however, those Wald tests were based
on estimates of the variance covariance matrix that considered the values of θ to be fixed-and-known
in the software LOGIST (Wood et al., 1976). The fact that θ is an unknown random variable in the
model made those under-estimates of the variances in the covariance matrix, and inflated the Wald
test statistics.

Thissen, Steinberg, and Gerrard (1986) combined concurrent estimation of the group dif-
ference and the item parameters with LR tests in an analysis that was parallel with the analysis of
factorial invariance, although the 2PL item response model was used. LR tests require only the
loglikelihood of the two fitted models being compared; they do not require accurate estimates of the
item parameter error covariance matrix, which was a challenge to compute in the 1980s.

Thissen, Steinberg, and Wainer (1988) compared procedures implemented in various soft-
ware packages at the time, including both Wald and LR tests, in real and simulated data using known
item anchor sets. Thissen et al. (1993) followed up with more detailed comparisons of Wald and LR
tests using four different modeling-and-software combinations, and some data from the spelling test
used for the running example here as well as SAT data. All of these procedures involved concurrent
calibration, using some set of anchor items to (effectively) measure the difference between groups,
placing the item parameters on the same scale, and then comparing item parameters for the studied
items between groups. Thissen et al. (1993, p. 102) discussed the value of a “designated anchor”:
a set of items pre-determined to exhibit no DIF, that effectively determine the difference in distri-
butions of the latent variable between groups. They emphasized that both statistical analysis and
expert judgment should be involved in the selection of the anchor items. Williams (1997) described
constructing designated anchor sets for a statewide mathematics test, using a few test items alone or
test items along with teachers’ grades.

Williams’s (1993) dissertation, the basis of her 1997 publication, involved hundreds of ap-
plications of then-available IRT software, fitting one model at a time, and assembling the results
into many LR tests for individual items. In the conclusion of that dissertation, Williams (1993, p.
45) suggested for the future that “What is necessary is computer software which will simultaneously
compute the difference between the likelihood ratio statistics for the fully constrained and uncon-
strained models for all test items under investigation.” It would be some years before such software
was developed, but it was created in minimal form by Thissen (2001) to obtain simulation results for
a symposium on DIF presented at the annual meeting of the National Council on Measurement in
Education in 2001. That software include a mode in which it fitted the 2PL (or graded) IRT models
to all the items in a test with their parameters constrained equal between two groups; then it freed the
constraints on each of the parameters of each item, one item at a time, computing LR test statistics
as the difference between the log likelihoods for the constrained and less constrained models. This
was done to produce software for the IRT LR DIF procedure that was comparable in effect to that
available for observed-score-based DIF procedures.18 Absent alternatives, the IRTLRDIF (Thissen,

18There have been a number of procedures proposed to detect or measure DIF that are not based on statistical tests of
the parameters of IRT models. Well known among those are the Mantel-Haenszel procedure (Holland & Thayer, 1988),
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2001) software took on a life of its own and was fairly widely used for a decade or more. That
software has subsequently been superseded by a different algorithm implemented in the IRTPROTM

(Cai, Thissen, & du Toit, 2011) and flexMIRT® (Houts & Cai, 2020) packages. The mirt software
package (Chalmers, 2012) in R, has as one of its options an algorithm with the essential features of
IRTLRDIF.

To continue with results obtained with the spelling test, the column of Table 2 labeled
X2

LR(2) contains the LR χ2 tests with 2 d. f . for 18 items with some evidence of DIF relative to
the overall item set.19 All of the items in Table 2 have significant X2

LR(2) values after using the
Benjamini-Hochberg (BH) procedure (Benjamini & Hochberg, 1995; Edwards & Edelen, 2009)
to set the false discovery rate at 0.05 across the 76 overall DIF tests. The top 11 items in Table 2
exhibit significant DIF as evaluated by four procedures (two yet to be described); those are the items
with labels in Figure 1. The χ2 tests with 2 d. f . in the column of Table 2 labeled X2

Wald(2) contains
the Wald χ2 tests with 2 d. f . computed with the algorithm described by Woods, Cai, and Wang
(2013) and implemented in IRTPROTM (Cai et al., 2011) and flexMIRT® (Houts & Cai, 2020). One
of those, item 54, tableaux does not exhibit significant DIF using the Wald test, after correction for
multiplicity; that is not unexpected, given results obtained by Woods et al. (2013) that showed that
the Wald procedure using the latent mean and variance computed with all the items exhibited a little
less power then LR tests using all other items as anchor. There is no indication from any of the
analyses of slope DIF for any of the items in the spelling test, so this is exclusively about b-DIF, or
differential difficulty.

The results in Table 2 were obtained without purification of the anchor. Woods (2009)
mentioned three earlier iterative purification procedures by Bolt, Hare, Vitale, and Neman (2004),
Edelen, Thissen, Teresi, Kleinman, and Ocepek-Welikson (2006), and Kim and Cohen (1995), then
suggested an empirical procedure to select anchor items using only the test responses. Woods (2009)
suggested beginning with all-other-items as anchor LR tests, and then selecting the 10-20% of the
items with the smallest LR test statistics as the anchor. This assumes that some central (in some
sense) set of the items measure the intended construct.

Recent Developments on the Selection of Anchor Items

When All of the Items Exhibit DIF

The heading of this section is a paraphrase of the title of Steinberg’s (2016) presentation to
the Society for Multivariate Experimental Psychology entitled When Every Item Exhibits DIF Rela-
tive to the Same Anchor: An Illustration of the Interpretation of DIF. That presentation summarized
results described in more detail by Sharp et al. (2019), in which the “items” were nine diagnostic
criteria for borderline personality disorder (BPD), rated by a clinical interviewer. In a comparison
of the ratings obtained by adolescents and adults, all nine items exhibited significant DIF using the
all-items-as-anchor Wald test procedure. That result is surprising, because the DIF detected with
that algorithm is relative to the average difference between the groups across those very same nine
items. Inspection of the direction of DIF and the item content clarified the result: For a set of four of
the criteria (“abandonment fears, unstable relationships, identity disturbance, emptiness”) the adults

SIBTEST (Shealy & Stout, 1993), and area between the curves computations (Raju, 1988); there are others. However
to maintain parallelism with the analysis of factorial invariance using parametric factor analytic models, the focus here
remains solely on DIF procedures based on parametric IRT models.

19These values were computed with the mirt software package (Chalmers, 2012) in R.
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Item Spelling Word X2
LR(2) X2

Wald(2) X2
Robust(2) WtRobust di fRegularized

39 grenade 47.1 35.6 33.5 0 -0.33
8 shrapnel 46.0 41.3 42.1 0 -0.23

27 girder 28.8 25.1 24.5 0 -0.14
72 artillery 31.9 30.6 30.0 0 -0.13
92 quagmire 18.9 18.1 18.8 0 -0.07
38 petrology 15.3 14.7 15.2 0 -0.05
69 umbrage 12.0 11.6 11.4 0 -0.05
15 mimicry 16.8 16.3 16.7 0 -0.04
53 cherish 18.1 16.7 11.1 0 0.09
47 velveteen 70.6 60.7 52.3 0 0.35
96 opal 59.1 47.3 43.5 0 0.56

Robust: not (significant) DIF
35 cheval 12.1 11.3 10.1 0 0.07
18 pajamas 12.5 11.7 9.3 0.02 0.16
16 diner 12.8 11.7 8.7 0.32 0.25

Regularized: not DIF
64 potable 13.4 13.5 14.2 0 0
82 invigorating 12.9 11.3 11.1 0 0

Robust and Regularized: not (significant) DIF
88 indecent 11.2 10.5 9.1 0 0

LR DIF only (barely)
54 tableaux 10.6 8.7 5.8 0 0

Table 2

Results for four DIF detection methods for the 18 (of 76) spelling test items with significant DIF
indicated by the LR test using all other items as the anchor. X2

LR(2) is the LR test statistic value,
X2

Wald(2) is the Wald test statistic value using the latent variable mean and variance obtained with
all items constrained equal, X2

Robust(2) is the robust method test statistic, WtRobust is the robust
method linking weight, and di fRegularized is the regularized b−di f estimate. Italized X2 values are
not significant after BH control of the false discovery rate. WtRobust = 0 or di fRegularized ̸= 0
indicates DIF.
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more often received higher ratings; for the other five criteria (“impulsivity, suicidal behaviors, af-
fective instability, uncontrolled anger, and paranoid ideation”) adolescents scored higher (Sharp et
al., 2019, p. 1017).

This result is a very different one from the original plan for DIF analysis, which was to find
a small number of biased items on a test of educational achievement or proficiency, and remove
those. The result converges on the late-twentieth-century intended use of the analysis of factorial
invariance, to draw conclusions about whether a scale provides comparable measurement across
groups. The item-by-item nature of the DIF analysis converges with the idea of partial factorial
invariance. And the report makes it clear that expert judgment is required to make sense of the DIF,
which in the case of this example shows that one can conceive of two factors underlying ratings
for BPD, one which tends to increase between adolescence and adulthood, and the other which
decreases. Further, it makes it clear that DIF results, like the results obtained with exploratory
factor analysis, require expert judgment to interpret. The statistical tests alone do not say what is
measured by which indicators.

When Many of the Items May Exhibit DIF: Growing the Anchor

DIF analysis has increasingly come to be used to provide evidence supporting the veracity
and validity of translations and educational tests and psychological scales. However, some studies
have shown that many items on a translated scale may exhibit DIF; for examples see Edelen et al.
(2006); Ercikan and Koh (2005); Orlando and Marshall (2002), and Yang et al. (2011). If many
items on a scale exhibit DIF, using all items, or all of the other items, as the anchor for DIF tests
may yield poor results, because the anchor is highly contaminated. For that reason, to guard against
the possibility that many items would exhibit DIF, Y. Chen et al. (2019) and Y. Chen et al. (2020)
used a procedure to grow the anchor from a single item in the context of DIF analysis for translations
of two sets of clinical psychology scales from English into Mandarin.

The use of one-item anchors has been proposed a number of times: Thissen et al. (1988)
mentioned the idea briefly, Rensvold and Cheung (2001); Wang (2004) suggested analyses that
rotated through the use of all other individual items on the scale as anchors, one at a time, and Stark,
Chernyshenko, and Drasgow (2006) proposed that a single item be chosen by analogy with a single
variable that is chosen to set the scale in factor analytic analyses. While Stark et al. (2006) correctly
point out that the choice of a single variable to set the scale makes no difference for linear-normal
factor analytic results, that is only true for the fit of the model. The choice of a single item to identify
the latent variable is very important for the definition of that latent variable, and that is important
for item analyses in test theory.

So the variant of the one-item anchor used by Y. Chen et al. (2019) and Y. Chen et al.
(2020) differed in two ways from previous suggestions: (1) The (first) anchor item was carefully
chosen to be the item that an expert panel considered best represented the trait that was the target of
measurement; the experts were also informed of the pattern of DIF results obtained using all items
as the anchor. (2) An attempt was made to grow the anchor, by testing all other items for DIF, and
then including any items that did not exhibit DIF in an expanded anchor and repeating the process
until all remaining items exhibited significant DIF.

The results obtained by Y. Chen et al. (2019) and Y. Chen et al. (2020) varied across scales:
For some scales, only one or two items out of nine or 11 exhibited DIF between language / cultural
groups; for other scales almost all of the items exhibited DIF when anchored by the single item that
best represented the target latent variable. In the former case, removal of a single offending item or
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two yielded comparable measurement across languages / cultures, but in the latter case, the results
converge to a failure of factorial invariance in the classical factor-analytic sense: It appeared that
cultural differences were such that some latent variables simply did not exist in the same form in
the two cultures, making comparable measurement impossible.

DIF as Random Effects, Alignment, and Regularization

A special issue of Frontiers in Psychology introduced by Van De Schoot et al. (2015, p. 1)
extended the use of random effects models from factorial invariance analysis to DIF analysis; Van
De Schoot et al. (2015, p. 1) summarized the contents: “Furthermore, our special issue contains two
extensions of approximate MI to the field of IRT (see also Fox and Verhagen, 2010). Instead of us-
ing substantive prior distributions as in the Bayesian approximate MI method, the method described
by Fox establishes a measurement scale across countries and conceptualizes country-specific non-
invariance in item parameters as random deviations through country-specific random item effects.
In such conceptualization cross-group comparisons can still be made even in the presence of non-
invariant items. . . . Another contribution to our special issue by Muthén and Asparouhov (2014)
concerns the use of the alignment method (see also Asparouhov and Muthén, 2014) in IRT models,
a method which is essential when applying approximate MI. This method minimizes a loss function
which makes sure that there are a few large non-invariant measurement parameters instead of many
smaller non-invariant measurement parameters, an optimal alignment strategy which resembles the
rationale underlying rotation of factor solutions in EFA.” All of this anticipated the use of regular-
ization in IRT, another way to use data analysis to identify zero or near-zero group differences.

The use of regularization in the context of multiple regression was suggested by Tibshirani
(1996); specifically, the least absolute shrinkage and selection operator (lasso) is intended to pro-
vide perform predictor variable selection in multiple regression by shrinking some small regression
coefficients to zero. The idea has subsequently been applied much more broadly, including in IRT-
based DIF analysis, in which the model is parameterize so that differences between the groups’
item parameters are themselves parameters, and then those differences, representing DIF, shrink to
zero in the estimation if there is no DIF. Magis, Tuerlinckx, and De Boeck (2015) and Tutz and
Schauberger (2015) used the lasso penalty to examine DIF with the one-parameter logistic model,
and Bauer, Belzak, and Cole (2020) and Belzak and Bauer (2020) examined its performance with
the 2PL model. S. M. Chen, Bauer, Belzak, and Brandt (2022) examined a Bayesian alternative to
the lasso, spike and slab priors, in the context of DIF detection using the moderated nonlinear factor
analysis model.

Using the approach described by Belzak and Bauer (2020) and implemented in Belzak’s
(2021) software, DIF effects for each item’s a and b parameters were estimated for the spelling
test example, shrinking to exactly zero for items that appear to have no DIF. The column labeled
di fRegularized in Table 2 contains lasso estimates of b-DIF for some of the items; negative values
represent DIF favoring males, positive values for items that favor females, and zero when the al-
gorithm indicates no DIF. In addition to the items listed in Table 2 that exhibit DIF according the
LR tests with all-other-items as anchor, the lasso regularization analysis estimates non-zero DIF for
the words regress, gravitate, mariner, remember, satin, archer, inspiration, pleadingly, and zyzygy.
The b-parameter locations of those items are shown in Figure 2, which is the same as Figure 1 with
different items labeled: The lower seven items in Table 2 are labeled in Figure 2 in black; those
items exhibit significant DIF according the to the all-other-items anchored LR procedure, but not
by regularization (or the robust method, yet to be described). The additional items labeled in blue
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in Figure 2 are flagged for DIF by the regularization procedure, those labeled in red by a robust
procedure, and those labeled in magenta by both.

Robust Estimation of the Group Difference

Harking back to the origins of IRT-based DIF analysis, Wang, Liu, and Liu (2022) and
Halpin (2022a) have recently proposed methods to use separate IRT calibrations within each of two
groups, along with robust estimation of the scaling parameters A and B, to produce modernized
versions of Lord’s (1977, 1980) analyses that are capable of detecting relatively large proportions of
DIF items. Wang et al. (2022) explicitly used plots like those shown in Figures 1 and 2, and similar
graphics made using IRT slope (a) parameters, and robust (least trimmed squares, or LTS) estima-
tion of the parameters A and B of the reference line. After experimenting with several combinations
using simulated data, Wang et al. (2022, p. 7 of preprint) settled on a system that involved “(1) de-
termining the slope of the reference line of a-DIF based on the a parameters only and (2) fixing the
slope of the reference line of b-DIF as the inverse of estimated slope for the reference line of a-DIF
and determining the intercept of the reference line of b-DIF using only the b parameters.” Wang et
al. (2022) worked out the mathematics required to use the vertical deviations of the points from the
reference line in graphics like Figures 1 and 2 as DIF test statistics. The found in simulation that
this robust method outperformed LR tests using all other items as the anchor when the proportion
of DIF item increased up to 50 percent, at which point even the robust system began to break down.

Halpin (2022a) proposed a somewhat different method for robust estimation of the scaling
parameters A and B: Instead of explicitly estimating a reference line in a graphic like Figures 1
and 2, he recast the algebra for the IRT differences in intercepts, and subsequently differences in
slope parameters, so that selection of the scaling parameters A and B involved robust estimation of
location instead of the slope and intercept of a line. Then Halpin used a redescending M-estimator
(the Tukey bisquare) to estimate A and B. The bisquare weights computed in this process are a
kind of outlier detection: Outliers are weighted zero in the computation of the weighted estimate of
location. Outlying differences between groups’ item parameters for the same item are DIF, so the
weights became an indicator of DIF. Halpin (2022a) also developed test statistics, including a joint
Wald test for the 2PL model with two d.f. for the slope and intercept that is comparable to the LR
and Wald tests discussed in previous sections.

Halpin’s (2022b) method applied to the spelling data yielded the Wald test statistics and
weights in the columns labeled X2

Robust(2) anbd WtRobust in Table 2. The weights are zero (indicating
DIF) for all but two of the items in Table 2; the robust test statistics also tend to be greater than the
6.0, the α = 0.05 critical value for a χ2 distribution with 2 d.f., but not all meet the false discovery
rate criterion.

As mentioned above, items labeled in Figure 2 in red are flagged for DIF by the robust
procedure, and those labeled in magenta by both the regularization and robust algorithms, but neither
set of items is flagged for DIF by the LR tests with all-other items as anchor and BH correction for
multiplicity. Items with labels in black (in either Figure 1 or 2), exhibiting significant DIF after BH
correction of the LR tests with all other items as anchor, tend to be clustered near the center of the
scatterplot; that is, their b parameters are near zero, which means they have the smallest standard
errors among the bs. Items labeled in color in Figure 2 tend to be farther from the center; those
items have b parameters with larger standard errors, making them less likely to be significantly
different between groups, for the same degree of deviation from the reference line. The robust and
regularized algorithms consider the differences between the b (and a) parameters with respect to
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Figure 2

2PL difficulty (bFemales) parameters of the spelling items for female examinees plotted against diffi-
culty (bMales) parameters of the items for male examinees. Items represented by points above and to
the left of the diagonal principal axis reference line are relatively more difficult for female examines
to spell, while items with points below and to the right of that line are more difficult for males. The
lower seven items in Table 2 are labeled in black. The additional items labeled in red are flagged
for DIF by the robust procedure, those labeled in blue by the regularization procedure, and those
labeled in magenta by both.
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reference lines based on different subsets of the items than the Wald or LR tests; the latter use all
(or all other) items. This may account for the fact that the robust and regularized procedures flag
some items that do not exhibit DIF when tested for significance by the Wald or LR tests.20

A small number of items labeled in Figure 2 are very near the reference line: inspiration,
pleadingly, and tableaux draw the eye. The b parameters plotted in Figure 2 are the 2PL estimates,
and those items have similar b parameters associated with somewhat different slopes. As noted
above, none of the slope differences between males and females in these data are significant using
any of the testing algorithms. When the slopes of those items are constrained to be exactly equal,
the b parameters for those items shift to become substantially different. The important thing is that
the trace lines are different either way.

Discussion: What have we learned?

Factorial Invariance and DIF

A prerequisite for either DIF analysis or the analysis of factorial invariance is configural or
pattern invariance: Do the two groups have the same factor structure? Tests of parameter equality
make little sense in the absence of configural invariance. Historically in applications of factor anal-
ysis, configural invariance was a real question, and may still be today. However, in a contemporary
CFA context, researchers are often fairly confident in the general structure of the data before they are
collected. And in the context of DIF analysis, the variables are usually the items on a measurement
instrument that is assumed to be essentially unidimensional, so configural invariance is basically the
assumed unidimensional model. As IRT-based DIF analysis is done more with multidimensional
models, certainly configural invariance will become more of a question, but that is rare now.

Given configural invariance, the contemporary wisdom is that factorial invariance analysis
proceeds in steps based on categories of model parameters (Millsap & Meredith, 2007; Putnick &
Bornstein, 2016): First comes evaluation of weak or metric invariance, computing a statistical test
for the equality of factor loadings between groups. There can be partial weak (or metric) invariance,
if only some of the factor loadings differ between groups. Second, for variables (items) for which
the loadings are constrained equal, strong or scalar invariance is tested by constraining the intercept
parameters to be equal, and computing a statistical test of that equality constraint. Partial scalar
invariance is a possibility. Finally, strict or residual variance invariance can be tested with the
constraint that the unique variances to be equal for the two groups. This sequence is represented in
the lower right hand quadrant of Figure 3.

In contrast, in the DIF literature, the focus is on the items (or variables) first, and the pa-
rameters of the model second (Thissen, 2017, p. 86): “The items are divided into an anchor set
(items that are assumed to have no DIF), and a studied item (or items). DIF is most often tested one
item at a time. When an item is tested for DIF using parametric IRT models, the between-group
differences for all of its parameters are tested simultaneously, then perhaps separately (by classes
of parameters) within each item.” That sequence is represented in the upper left hand quadrant of
Figure 3 for the 2PL model21, or in the upper right hand quadrant if the linear-normal factor model
is used for the IRT analysis. While most DIF analyses in the literature are represented schematically

20Thanks to Peter Halpin for pointing out this possibility, which deserves future research in some less anecdotal
context.

21In Figure 3 “2PL” stands in for any IRT model; that reference is explicit for convenience in specifying the parameters
a and b. Other IRT models have different parameters, so a general statement would not be so compact.
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Figure 3

Upper left quadrant: Schematic depiction of IRT-based DIF analysis using the 2PL model, checking
the equality of the parameters for a single item (orange) between groups using the other items (cyan)
as the anchor. Upper right quadrant: Parallel schematic depiction of CFA-based DIF analysis using
the linear-normal factor model, jointly checking equality of each item’s parameter set (λi, αi, σ2

i ),
repeating item-by-item. Lower left quadrant: Schematic depiction of the use of the IRT 2PL model
for the analysis of factorial invariance, testing first equality across groups of the slope parameters
as a set, then the thresholds as a set. Lower right quadrant: Schematic depiction of conventional
analysis of factorial invariance, checking first the equality of factor loadings between groups, then
adding the constraint of equal intercepts, and finally also adding the constraint of equal specific
variances.



FACTORIAL INVARIANCE AND DIF 24

by the upper left hand quadrant of Figure 3, there have been uses of the linear-normal factor model
as an IRT model; examples include studies by Raykov, Marcoulides, and Millsap (2013), Thissen
(2017), and Y. Chen et al. (2020). IRT analyses sometimes slip over into the lower left quadrant
of Figure 3; examples are studies by Thissen et al. (1986), Sharp et al. (2019), and Y. Chen et al.
(2019).

The point of this section is that whether one does statistical testing by blocks of parameters
(as in the lower half of Figure 3) or by item (or variables, as in the upper half of Figure 3) is a
choice made by the investigator that depends on the context and research question. Traditional
invariance analysis is about the veracity of the factor model as a representation of the structure of
the data across groups; for continuous data the linear normal factor model may be used, while one
might choose some IRT model for categorical responses. DIF on the other hand is all about partial
invariance, which does not get much attention in the factorial invariance literature.22 But if the
researcher is confident that a latent variable is measured by a set of items or variables, but wants to
identify and set aside any items or variables that might artifactually induce group differences, then
the item-by-item tests schematically represented in the upper half of Figure 3 accomplish the goal.
The responses to test items may be in categories or on some continuous scale.

The Order of Parameter Tests

In either factorial invariance or DIF analysis, there is universal agreement that the first
parameter equality constraints and tests across groups are of the loadings or slope (a) parameters,
either as blocks or within items, followed by tests of the intercepts or thresholds conditional on
equal slopes, again either as blocks or within items. That is because tests of intercept parameters
that are not conditional on equal slopes are meaningless, just as the case with traditional analysis of
covariance: With unequal slopes, the model lines or curves cross, and so a test of equality is only a
test of whether the crossing point (where there is no difference between the groups) happens to be
near zero on the x-axis. The third (block of) test(s) in the linear normal model, the test of the unique
variances, has no parallel in IRT models as they are usually parameterized.23

Ever since orders-of-statistical-tests were suggested by Jöreskog (1971) and Sörbom
(1974), in the conventional analysis of factorial invariance the factor (or latent variable) means
and covariance matrices have been left free to vary across groups while while tests of loadings, in-
tercepts, and unique variances are done; that is the same as has been done in DIF analysis, leaving
the groups means and variances free to reflect impact. It is reasonably clear that different factor (or
latent variable) means and variances across groups are results, not DIF or a lack of invariance. But
the latent variable covariances, or correlations, present a more complicated question.24

22At the International Meeting of the Psychometric Society at the University of Maryland in July of 2023, Michael
Edwards observed that a briefer summary of this is that “there is a different mindset that is reflected in how easy it is
to do ‘partial invariance.’ Item response theorists fully expect to find DIF, so consruct a system that can still function in
practice (an important characteristic) even if DIF exists and items cannot be removed. Structural equation modelers test
to determine a level of invariance and move on. So, more pithily, IRT folks expect to find DIF, SEM folks hope they
won’t.”

23There are parameterizations of some categorical response models that have a within-person-and-item discrimi-
nal dispersion parameter separate from the slope, but multi-group data and some cross-group equality constraints on
the threshold parameters are required to identify those additional parameters. Those features are not implemented in
commonly-available IRT software and such tests are not usually considered in IRT-based DIF analyses.

24There is very little literature on multidimensional IRT-based DIF analysis. What has appeared has used orthogonal
multidimensional IRT models (Fukuhara & Kamata, 2011; Bulut & Suh, 2017), so the question of what to do with the
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Are Latent Variable Correlations Part of Metric Invariance or DIF?

This question is raised when we recall from the decades-old literature on (exploratory) fac-
tor analysis, and now from textbooks, that rotation of a factor solution transforms any correlation
among the factors into cross-loadings (for orthogonal solutions), and reverses the process to move
cross-loadings into inter-factor correlations (for oblique rotations). So if latent variable correlations
are interchangeable with loading or slope parameters, should tests of equality of the factor correla-
tions be performed with the loading / slope tests? That is, first in the sequence? And not after tests
of the intercepts / thresholds?

Answers to these questions can be developed by thinking about the properties of the scores
one may want to compute to characterize the latent variables for individuals. Two cases can be
distinguished:

I. Collected Unidimensional Measures. This would be for an independent clusters multiple-
factors model, with each item associated with one (and only one) factor. Then one could for some
purposes compute unidimensional scores one factor at a time. If the factors are correlated, this may
be less statistically efficient than using all the data, but the latent variables are defined in this case
solely by their relations with a subset of the observed indicators. The latent variables’ correlations
with each other are consequent to that definition and may vary across groups or situations. This is
already what is done with any collection of unidimensional tests collected into a set without joint
analysis.

In this case the correlations among the latent variables are consequences or results, and
analyses of DIF for individual parameters, or blocked analysis of factorial invariance, would proceed
in the order suggested by the factor analytic literature: 1) Loadings / slopes, then 2) intercepts
/ thresholds, then 3) residual variances if the data are continuous and those are included in the
model. All tests would be done with free factor means and variance/covariance matrices for all but
a reference, standardizing group. One could add a test or examination of whether the correlational
structure of the latent variables differed, but that would be a result after the fact.

II. Explicitly Multidimensional Measures. In this case one anticipates computing or using
the scores as a multidimensional set, or a multidimensional score. In this case, if the latent vari-
ables are correlated, or if there are cross-loadings, responses to items associated with any of the
latent variables may contribute to scores (or measurement) for all of the latent variables. The la-
tent variables are defined in this case both by their relations with the observed indicators and their
correlations with each other.

In this case the correlations among the latent variables are integral to the definition of the
latent variables, as much as the slopes / loadings. So the factor correlations should be grouped
with the loadings / slopes in DIF tests (within items), or blocks of parameters for the analysis of
factorial invariance. That is, the order would be: 1) Loadings / slopes and factor intercorrelations,
then 2) intercepts / thresholds, and then 3) residual variances if the data are continuous and those
are included in the model. All tests would be done with free factor means and variances for all but a
reference, standardizing group. Note that to do the analyses this way, the latent variable correlations
must be separated from the latent variable variances, not treated as a unit, in a variance-covariance
matrix. Li, Kleinbort, Thissen-Roe, and Szary (2023) and Kleinbort, Li, Thissen-Roe, and Szary
(2023) recently described analyses done in this way.

It is up to the investigator to decide which of the those cases apply.

latent variable correlations has not arisen.
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The Designated Anchor Redux

A theme of this discussion is that a number of important aspects of the analysis of factorial
invariance or DIF are choices or judgments made by the researcher in the service of the context and
research questions. That is a general principle of the application of latent variable models. Nowhere
is that more salient than in the choice of a set of anchor items for DIF analysis, or, by extension,
the set of items or observed variables defining each latent variable in the context of partial factorial
invariance.

Recent developments may appear to make anchor selection part of an automated statistical
procedure for DIF, for example using alignment or regularization or robust estimation. But it is good
to remember Camilli’s (1993) observation that “Internal methods of DIF are ipstative” (p. 409). That
is, extant purely statistical methods of anchor selection select an average (in some sense) difference
between the focal and reference groups as the difference on the latent variable, and deviations from
that, positive and negative, become DIF. That can be a bad answer, most obviously in the case in
which half the items exhibit one difference between the two groups and the other half the items
a different difference, as was the case in the analysis reported by Sharp et al. (2019); the average
in that case agrees with none of the observed variables. This is not so much an unusual story as
it is a reminder that researchers should always use expert judgment to decide whether the set of
items used as the anchor represents measurement of the intended latent variable. External validity
evidence could support such judgment. Thissen et al. (1993, p. 102) emphasized the value of a
“designated anchor”, and that idea is reiterated here.

This idea generalizes to partial factorial invariance as well: Algorithms like alignment or
regularization or robust estimation of the reference line match up some central (in some sense)
set of variables, leaving other items to exhibit some degree of lack of invariance across groups.
However, researchers should remember that it may be that central set represents the intended latent
variable less well than some (possibly smaller) block of the items that appear to lack invariance.
Analyses leading to partial factorial invariance are exactly the same as DIF analyses, and users of
the two types of algorithms can learn one from the other. De Boeck (2023) reminded us in a recent
presenation that a majority of items, or even an entire test, may be biased, and DIF analysis using a
majority-rules anchor will not show that.

Conclusion

Jöreskog (1971, p. 425) foreshadowed one argument made here, that statistical analysis
alone does not provide the answers, when he obtained two different solutions in the very first exam-
ple of the uses of LR statistical tests for these procedures; he described the two solutions as follows:
“One is that the whole factor structure is invariant over populations with a three-factor solution of a
fairly complex form. The other is to represent the tests in each population by three factors of a par-
ticularly simple form, but these factors have different variance-covariance matrices in the different
populations.” The three latent variables in that example were defined somewhat (perhaps slightly)
differently by the two competing solutions. Jöreskog suggested that more data could settle the issue
empirically; that may be the case. However, it is a good reminder that with any given set of data and
analyses, ultimately the data analyst must choose.
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