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The factor analysis of ordered-categorical measures has been described in the literature on factor
analysis, but the extension of the analysis to the multiple-population case is less well-known.
For example, a comprehensive statement of identification conditions for the multiple-
population case seems absent in the literature. We review this multiple-population extension
here, with an emphasis on model specification and identification. The use of the method in the
study of factorial invariance is described. New results on identification are given for a variety
of factor structures and types of measures. Two widely-available software packages, LISREL
8.52 (Joreskog & Sorbom, 1996) and Mplus 2.12 (Muthén & Muthén, 1998), are applied in
simulated data to illustrate the method. The two programs are shown to have different model
specifications for this method, leading to different fit results in some cases. The final section
discusses some remaining problems facing researchers who wish to study factorial invariance in
ordered-categorical data.

Introduction

Common factor models for ordered-categorical measures are described
in a number of sources (Bartholomew, 1980, 1984, 1987; Bock & Aitkin,
1981; Browne & Arminger, 1995; Christofferson, 1975; Joreskog, 1990,
1993; Joreskog & Moustaki, 2001; Mislevy, 1986; Muthén, 1978, 1984). An
“ordered-categorical” measure is one whose values are both discrete and
ordinal in scale. Examples would include dichotomously-scored test items,
likert-scale questionnaire items, and partial-credit polytomous items. Most
items used on tests and questionnaires in the social sciences could be
classified as ordered-categorical, and so the factor model for such measures
is potentially applicable if item-level analyses are to be conducted. In the
factor analysis of such items, the use of the ordered-categorical factor model
can avoid problems that result when the traditional continuous factor model is
applied (Babakus, Ferguson, & Joreskog, 1987; Bernstein & Teng, 1989;
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Olsson, 1979; Rigdon & Ferguson, 1991). If we wish to study the invariance
of the factor structure for these items, we must consider the multiple
population extension of the factor model. Unfortunately, in the ordered-
categorical case, this extension has not received much attention in the factor
analytic literature (Browne & Arminger, 1995; Lee, Poon, & Bentler, 1989;
Muthén & Christofferson, 1981; Poon, Lee, Afifi, & Bentler, 1990). For
example, a general statement of minimal conditions for identification in the
multiple-population case seems lacking in the literature, although limited
results are available (Browne & Arminger, 1995; Muthén & Asparouhov,
2002; Muthén & Christofferson, 1981).

The present article has two goals. The first goal is to describe the use of
the factor model in studying factorial invariance for ordered-categorical
measures, with an emphasis on model specification and identification. The
description is intended to be general enough to include a variety of possible
factor structures and data conditions. The second goal is to illustrate the
foregoing ideas as they apply to two widely-available software packages that
can handle the factor model for ordered-categorical measures in multiple
populations: LISREL 8.52 (Joreskog & Soérbom, 1996) and Mplus 2.12
(Muthén & Muthén, 1998). Here we will illustrate the different
specifications used by these two programs, and the different results that
accrue from these two specifications.

We begin the article with a description of the factor model for ordered-
categorical measures in the multiple population case. The definition of factorial
invariance in the context of the ordered-categorical model is discussed, and the
unique nature of this case relative to the traditional continuous measure case is
noted. New results on parameter identification in the ordered-categorical
model are given in Appendix A, and are discussed in this section. The next
section describes the model specifications used in the LISREL and Mplus
software packages for factor models of ordered-categorical measure in
multiple populations. We then illustrate the use of these two programs using
several large simulated datasets whose factor structure is known. Three
different model specifications are illustrated, two of which represent violations
of factorial invariance. The performance of the two software packages in
detecting the violations of invariance are displayed, emphasizing the fit
evaluation in each case. The final section of the article discusses some further
issues in the use of the factor model in ordered-categorical data.

The Multiple-Group Factor Model for Ordered-Categorical Measures

Let X, be the score on the j" ordered-categorical measure for the i
person in the k™ group or population. We will simplify the presentation by
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assuming that all measured variables to be modeled have score ranges {0, 1,
..., ¢}, where c is the largest possible score, common across measures. A
more general description would permit ¢ to vary across variables, but this
extension introduces needless complications for the purpose at hand. We will
also confine discussion to the two population case (k = 1, 2) because all of
the relevant results can be illustrated with only two populations. The number
of measured variables is p(j = 1, ..., p). When samples are drawn from the
two populations, the number of persons in the k" group is n,.

In the factor model for ordered-categorical data, the observed scores Xl.jk
are assumed to be determined by unobserved scores on the latent response
variates X, . These latent response variates are continuous in scale, unlike
the observed measures X The observed measures can be viewed as
discretized versions of the latent response variates, given that scores on the
observed measures are determined through

_ . - *

) Xl:/,k =m if Vi = Xy < Vil

where m =0, 1, ..., cand {v, , v , .., v, } are latent threshold parameters
JjkO Jk1 Jk(c+1)

for the j* variable as measured on persons from the " group. Two of the
thresholds are pre-defined: v, = —* and v, = = +%. The remaining c
threshold parameters may vary across variables and across groups. The
probabilities associated with observed values for X, are determined by the
probability distribution for X ;k . Let X;k ={X, p X o Xipk} bethe 1 x p
vector of observed scores on the p variables for the i person in the k™
group, with X/ the analogous vector of scores on the latent response

variates. It is typically assumed that

where p, is a p x 1 vector of means on the latent response variates, and
EZ is a p x p covariance matrix for the latent response variates, each
subscripted to permit differences in these parameters between groups. The
probability of observing any value for X,,» or any joint set of values for X =

(X0 Xopo oo Xipk}’ is found through integration of the multivariate density in
Equation 2.

As described thus far, the observed values X:k ={X X -oor Xipk} do
not permit identification of both the threshold parameters {v, , v

” ) Ao Vi ot
ij(m)} and the response variate parameters (.2, ) without further

constraints. To illustrate, for any p x 1 vector a and p x p diagonal matrix B,
we can define new latent response variates
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3) Y, =a+BX],
with
) Y, ~ MVN (a+Bp,B3,B’),

and new thresholds w, =a, +bv, . The new latent response variates Y,
in combination with the new thresholds {mjko, W5 o)jk(c+1)} yield the same
probability structure for X;k ={X,» X s Xl.pk} as do the original variates
and thresholds. Hence we cannot use the observed values X, to estimate
the thresholds or latent response parameters without placing restrictions on

the thresholds, on the response variate distributions, or on both. For example,

in the single-population case, typical restrictions are that w, = 0 and
diag(Y,) = 1, standardizing the latent response variates. Under this
restriction, the observed response frequencies for X;k ={X,» Xppo s Xipk}

lead to estimates of thresholds {v/ko, Vigs = ka(m)} as percentiles of the
standard normal distribution. The off-diagonal elements of 3, are estimated
as polychoric correlations. As will be discussed below, once multiple
populations are considered, different identification constraints on the
thresholds and on (., , ¥, ) must be adopted.

Given the latent response variates X ;k , the factor model is specified for
these variates as

* ’

(5) Xijk - Tjk + )\jk w t uijk’
where Ty is a latent intercept parameter, )\jk is an r x 1 vector of factor
loadings for the j* variate on r factors, & is the r x 1 vector of factor scores
for the i person in the k" group, and u,, is the j" unique factor score for
that person. Letting u, = {u,, u . u,,} be the 1 x p vector of unique
factor scores, we assume that

2k "

(6) g, ~MVN(k, ®), u, ~MVNO,O),

with Kk, an r x 1 vector of factor means, (I)k an r x r factor covariance matrix,
and @, a p x p diagonal covariance matrix for the unique factors. We also
assume that Cov(§,, u,) = 0 for all i, k. These assumptions lead to the
structure

(7) EX;)=m =7, +Ax,, Covu(X,)=3 =ADPA,+0,
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where 1-;( ={T, o oo oo 'rpk} and Ak is the p x r factor pattern matrix whose
J™ row is }\;k. All factor model parameters are subscripted to permit group
differences. Not all parameters are identified however, even in the case in
which (p, ,3, ) are known for all k. In the typical case in which (p, , 3, )
are not themselves identified from the data as reviewed above, further
identification constraints are needed. We return to this point.

Factorial Invariance

Unlike the traditional case involving continuous measured variables, the
factor model in the ordered-categorical case only indirectly determines
scores on the measured variables through the probabilities associated with
the measured outcomes in Equation 1. The definition of factorial invariance
in this case is built on the conditional probabilities for various observed
outcomes given scores on the common factors. This approach is consistent
with general definitions of measurement invariance that rely on conditional
probability (Mellenbergh, 1989; Meredith, 1993; Meredith & Millsap, 1992).
For example, if the foregoing factor model is an appropriate measurement
model for the ordered-categorical measure X _, we can state that
measurement invariance for X in relation to §, and in relation to the groups
under study, holds if

®) PX, = xl§) = P(X,, = xl§,),

for all i, j, k. Equation 8 states that the conditional probabilities of various
outcomes for X given the factor score &, do not depend on the group.
The most obvious way in which measurement invariance in Equation 8 can
hold is if the conditional distribution of X, given §, is itself invariant across
groups. Under the multivariate normal model just described, invariance in the
conditional distribution of X, given &, holds if

) E(X, ) =7+ AE,

(10) Cov(X,1E)=0,

for all k. Equations 9 and 10 are not sufficient for measurement invariance in
Equation 8 however, because measurement invariance refers to the observed

measures Xijk. Another condition is needed for measurement invariance:

(1D v, =V, for m=0,1,...,¢c, j=1,2,..,p,

Jjkm jm
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for all k. Taken together, Equations 9, 10, and 11 show that the relevant
parameter set for studies of invariance are the thresholds {vjko, Vigs woos ij(m)}
and the factor model parameters (7,, Ak, ®k). Measurement invariance does
not require invariance in the factor means or factor covariance matrices (k,, ®,).
Under measurement invariance, group differences in (i, ®,) would still lead to
group differences in the unconditional latent response variate parameters
(p»2,), and subsequent differences in the moment structure for the
observed measures.

Model Identification

The ordinary confirmatory factor analysis model for continuous measures
requires some constraints on the model parameters if the model is to be
identified (Anderson & Rubin, 1956). The extension of the factor model to
multiple populations and ordered-categorical measures raises additional
identification problems. In this extension, we can approach the identification
problem by dividing the constraints needed into two categories. The first
category contains constraints needed to identify (p, , 3, ) within each group.
The second category contains constraints that will identify the factor model
parameters {7, A,, @, ®_,k }. If (p, .2 ) are identified and estimable,
the second constraint category includes the constraints ordinarily needed in
any confirmatory factor analysis using latent means. A general approach to
identification would proceed in two stages. Stage one would impose
constraints on the thresholds {v,, v, .., v, .} and/or on (p,. %) to
yield identification for (p, , 3, ). Stage two would then impose constraints on
the factor model { T Ak, @k, <I)k, Kk} to identify these parameters. This two-
stage approach is sufficient to resolve the identification problem generally.
One difficulty however is that depending on the structure of A, and the
number of response categories ¢, we may be able to employ fewer
constraints in stage one by taking advantage of the model structure. In this
case the division into two stages is less clear, and the identification problem is
attacked simultaneously for the thresholds, for (., ,, ), and for the factor
model parameters {7,, A,, @, ® x,}. This point is illustrated next.

Congeneric Structure. Suppose that in the factor model in Equation 7,
each row of A, has only one nonzero element. This structure would include
any single-factor model, and any multiple factor model in which each latent
response variate loads on only one factor. The general factor analytic
identification problem is greatly simplified in this case (Bollen, 1989). We will
denote this factor structure as “congeneric”, to distinguish it from the more
complex case in which variables load on multiple factors. In this congeneric
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case, the following constraints are sufficient to achieve model identification
when ¢ > 1 (i.e., each measured variable has at least three categories):

1. In one group, fix p, = 0 and Diag(3, ) = I. These constraints are
sufficient to identify all threshold parameters in this group.

2. Fix k= 0 in the above group.

3. In all groups, fix 7, = 0, and also pick one nonzero loading for each
factor to fix to one. The variate chosen for a given factor will be denoted
the “reference variate.”

4. Require that for a chosen value of m, Vi = Vi for all k, withj =1, ..., p.
This constrains one threshold per latent response variate to be invariant. In
addition, for each of the r reference variates, require a second threshold to be
invariant. The number of such additional invariance constraints is equal to the
number of factors. Hence we require a total of p + r thresholds to be invariant.

Appendix A shows that the above conditions are sufficient to identify the
factor model. Constraints 1-3 have already appeared in the literature
(Muthén & Christofferson, 1981). A notable feature of constraint 4 is that
complete invariance of all threshold parameters is not required. All variates
have one invariant threshold parameter. A subset of the variates have a
second invariant threshold, with the size of the subset being determined by
the number of factors. This choice of number corresponds to the number of
factor means, and leads to the identification of those means as shown in
Appendix A. No invariance constraints are imposed on the factor means
themselves, on the factor covariance matrices, or on the unique factor
variances. The only invariance constraints imposed on the nonzero factor
loadings are those used for the reference variates. The identification
constraints described here are not unique; alternative sets of conditions exist
that are sufficient for identification. Different software programs may adopt
different identification conditions, leading to differences between programs in
parameter estimates and even model fit, as shown below.

One special case that requires further comment arises when the
measured variables are all dichotomous (c = 1). It is not possible in this case
to implement the threshold constraints as described in 4. Using “d” to denote
the dichotomous case, we can replace constraint 4 with:

4d. Require View = Vi for all k, withj =1, ..., p.

5d. Pick r diagonal elements of 3, to fix to unit values for all k. The
chosen elements should correspond to the reference variates chosen for
constraints in A,.

The implication of the first constraint set in 4d is that for dichotomous
measured variables, all thresholds will be invariant. As in the general
ordered-categorical case, the thresholds become identified by the
requirement that p, =0 and Diag(3, ) = I in the first group. Full invariance
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of the thresholds alone is not a sufficient condition for identification in the
dichotomous case. The constraint set in 5d above supplies additional
constraints that resolve this problem. Appendix A describes why these
further constraints lead to identification, and also presents some alternative
identification constraints that are also sufficient. Taken together, the
constraints 1-3, 4d, and 5d permit identification of any congeneric factor
model for dichotomous variables.

General Factor Structure. We now consider factor models for
ordered-categorical variables in which r > 1 and no restrictions are placed on
the structure in A apart from the requirement that A, have full rank for all
k. Minimal identification conditions that cover all possible structures for A,
for all values r > 1, are unknown even in the case of continuous measured
variables (Anderson & Rubin, 1956; Shapiro, 1985). The ordered-categorical
case introduces further problems. We will not solve this general
identification problem here. Instead, we will give constraints that are
sufficient to render the identification problem for ordered-categorical
variables to be equivalent to the continuous variable case.

Consider first the case in which each measured variable assumes values
in at least three categories (¢ > 1). Using “nc” to denote the general (non-
congeneric case), the following set of model constraints can be used:

1. In one group, fix w, =0 and Diag(3, ) =1 These constraints identify
all threshold parameters in this group.

2. Fix k, = 0 in the above group.

3nc. Fix 7, = 0 in all groups, and impose constraints on A, that will
render A, to be rotationally unique within each group. These constraints can
take several forms (Bollen & Joreskog, 1985; Joreskog, 1979; Millsap, 2001).
A common choice is to pick r rows of A, to fix as rows of an r x r identity
matrix.

4nc. Pick two values of m, and require that for each chosen value of m,
Vi = Vim for all k, with j = 1, ..., p. These constraints force two thresholds
per measured variable to be invariant.

As shown in Appendix A, constraints 1 and 4nc are sufficient to identify
(pLZ s Ek ) for all &, and to identify all remaining thresholds. The constraints in
3nc are standard constraints needed to achieve uniqueness for A,.

The previous threshold constraints will not work when the measured
variables are dichotomous (¢ = 1). In this case, the constraints to be used
will include 1, 2 and 3nc, on the previous page, but will replace 4nc with:

4d. Require v, =v, forall k, withj =1, ..., p.

5dnc. Requ1re Dzag( 2 ) =1 for all k.
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The set (4d) above renders all thresholds to be invariant, as in the congeneric
case. The set (5dnc) standardizes the latent response variates to unit
variance across all groups. Note that these variates are not required to have
invariant means p, however.

From the standpoint of invariance investigations, identification constraints
that require Diag(3,) = I have one disadvantage: it becomes difficult to
evaluate the invariance of the unique factor covariance matrices ©,. For
example, suppose that the loadings A, are invariant and the constraint
Diag(3, ) = I is in place across all groups. Then group differences in the
common factor covariance matrices ®,  will generally imply that the matrices
0, also vary across groups. To avoid this problem, an alternative set of
identification constraints based on @ = I are described in Appendix A.
These constraints are denoted the “theta parameterization” in Mplus (Muthén
& Muthén, 1998).

Multiple-Group CFA of Ordered-Categorical Variables:
LISREL and Mplus

Effective use of the foregoing model to evaluate factorial invariance
requires software that can (a) specify models for independent groups, and (b)
specify models for ordered-categorical measures. Two widely-available
software programs that fulfill these requirements are LISREL 8.52 (Joreskog
& Sorbom, 1996) and Mplus 2.12 (Muthén & Muthén, 1998). In this section,
we describe the model specifications used by each of these programs in
conducting confirmatory factor analysis (CFA) in multiple-groups with
ordered-categorical data. We illustrate how the model specifications used by
the two programs differ, leading to different fit results. The results given in
the previous section are used to help understand both the program
specifications and the different fit results. We also show how each
program’s model specification performs under violations of factorial
invariance. Throughout this section, our emphasis lies in model specification
and the evaluation of fit. Estimation issues will not be the focus of interest.

LISREL

The specification of the LISREL 8.52 (Joreskog & Sorbom, 1996) CFA
model for ordered-categorical variables in multiple groups differs from the
general description given earlier in several respects. First, the LISREL
model imposes invariance on all thresholds regardless of the number of
categories required by each measured variable. Thresholds are then
assigned values as described below, and are treated as fixed parameters for
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purposes of estimation. Second, latent intercepts 7, are not fixed to zero in
all groups, and the factor means k, are not fixed to zero in one group. The
user is free to constrain these parameters as the need arises. Third, in the
case of dichotomous indicators, the condition Diag( 2: ) =1 is imposed in all
groups regardless of the factor structure or number of factors. In the
polytomous case, this condition is not imposed, and both w, and 3, are
estimable given the fixed values of the thresholds.

The LISREL analysis proceeds in the following three stages, the first
two of which use PRELIS 2.3 (Joreskog & Sorbom, 1996):

1. Pooling data from all groups, PRELIS is used to estimate pooled
threshold estimates in the combined group. For polytomous items, the first
two thresholds are fixed to 0 and 1 respectively. For dichotomous items,
thresholds are fixed to zero. All threshold estimates are saved to a file for
later input in stage two.

2. Using the threshold estimates from stage one as fixed values, PRELIS
then estimates p, and 3, within each group separately, using the same
threshold values in all groups. This analysis is a multiple-group analysis.
Estimates of (., ,2,) are saved, along with appropriate estimates of their
asymptotic covariance matrices. Note that in general, p, # 0 and Diag(3,,)
# I for any k. An exception occurs when ¢ = 1. In this dichotomous case,
Diag(3, ) = I for all groups.

3. The estimates of (.2, ) are input to LISREL, along with the
asymptotic covariance matrices. A multiple-group CFA model is fit to the
data. The model is the same as in Equation 7, with 7, # 0 generally.
Several estimation methods are available. We focus on weighted-least
squares (WLS) on the next page.

In stage three, the user may evaluate invariance in (7, A, ©,) using a
series of nested hypothesis tests, or conventional goodness-of-fit criteria.
Invariance in the thresholds is assumed, rather than evaluated. For some
situations (e.g., dichotomous indicators), full threshold invariance does not
exceed what is required for identification. For other situations (e.g.,
polytomous indicators with ¢ > 2), the full threshold invariance exceeds what
is required. We will explore some consequences of full threshold invariance
below.

Mplus
The Mplus 2.12 (Muthén & Muthén, 1998) model also differs in several

respects from the general description given earlier. First, p x p diagonal
scaling matrices A, are introduced such that
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(12) R =AXA,

where R, contains the polychoric correlations among the latent response
variates in the k" group. The scaling matrices A, have diagonal elements
equal to the reciprocal square roots of the diagonal elements of 3, . The
elements of A may or may not be free parameters in the model, as
explained below. Second, the unique factor covariance matrices ®, may or
may not be independent parameters in the model, again depending on the
choice of the user. Third, although the thresholds are fully invariant by
default in Mplus, the user may override this default and employ any pattern
of threshold invariance constraints desired. Several estimation methods are
available. We focus on WLS estimation here.

Mplus offers two parameterizations in relation to A, and O, that are
relevant to studies of invariance. In the “theta parameterization”, the A are
not independent parameters in the model, and are found as

(13) A’ =diag AP A, +0),

and so group differences in A, are created by group differences in (A ®,0).
In the reference group, the unique factor covariance matrix @, is fixed as O,
= I, with @, varying across the remaining groups. Given that the A, are not
of direct interest in tests of invariance, this theta parameterization is suitable
for invariance research. The second “delta parameterization” fixes A =1 in
the reference group, letting the remaining A, be free. Now the unique factor
covariance matrices @, are no longer free parameters:

(14) 0, = A”- diag(AD A}).

Group differences in the @, are due to group differences in (A ®@,). It is not
possible to evaluate the unique factor covariance matrices @, for invariance
under the delta parameterization. These matrices are calculated as residual
matrices in Equation 14 under this parameterization, and are not available for
invariance constraints. In what follows, we will focus primarily on the theta
parameterization, with mention of the alternative delta parameterization as
the need arises.

Baseline Models
The next section will illustrate the use of LISREL and Mplus in the
investigation of factorial invariance in ordered-categorical data. All of the

examples reported below use the same baseline model when conducting the
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analysis using LISREL, and the same baseline model when conducting the
analysis using Mplus. These baseline models provide a plausible starting
point for the study of factorial invariance, given that the number of factors is
the same in all groups. The LISREL and Mplus baseline models are different
in structure due to the differing specifications used by these two programs.
In the LISREL case, the baseline model has the following characteristics:

1. All thresholds {vjko, Vips - vjk(m)} are fixed and invariant.

2. All common factor means k, and covariance matrices ®, are free.

3. All unique factor covariance matrices @, are free.

4. Factor loadings A, are free, except for 7* fixed elements used to achieve
rotational uniqueness in each group. Further constraints on the loadings would
be introduced if > 1 and the congeneric factor structure is specified.

5. Latent intercepts 7, are free, except for r elements in each group that
are fixed (usually to zero). The placement of the fixed elements in 5 is
coordinated with 4: the r elements selected in 5 correspond to the variables
whose loadings are fixed in 4.

In the case of Mplus, the baseline model would have the following
characteristics:

1. Thresholds {vjko, Vips oo vjk(m)} are free except for a subset that are
constrained to invariance across groups. The size of this subset depends on
the structure imposed on the loadings, and on whether ¢ > 1.

2. All common factor covariance matrices @, are free. Common factor
means K, in one group are fixed to zero, but means are free in the other groups.

3. The unique factor covariance matrix @ is fixed as ® = I in one
group, but is free in all other groups unless ¢ = 1. When ¢ = 1, additional
elements of @, are fixed to unit values in other groups, depending on whether
the factor structure is congeneric.

4. Factor loadings A, are free, except for 7* fixed elements used to achieve
rotational uniqueness in each group. Further constraints on the loadings would
be introduced if > 1 and the congeneric factor structure is specified.

5. All latent intercepts 7, are fixed to zero. This constraint can be
relaxed (see Muthén & Asparouhov, 2002), but this option will not be
illustrated here.

6. Scaling factors A are free in all groups, but are not independent
parameters under the theta parameterization.

The exact configuration of constraints in Mplus depends on the number
of thresholds needed per observed measure, and on the structure in the
loadings. This dependence is explained in Appendix A.

To illustrate the calculation of degrees of freedom (df) for the two
baseline models, we first count the number of independent parameters to be
estimated. Table 1 gives the count for the case of two groups, p measured
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variables, r = 1, and ¢ > 1. This case corresponds to the examples presented
next. As revealed by Table 1, the number of parameters need not be equal
for the LISREL and Mplus models. The next step in the df calculation
requires a count of the number of sample covariance matrix elements, plus
the number of sample means (LISREL) or the number of sample response
proportions (Mplus). For Mplus, we have 2pc independent response
proportions across variables and groups. We also have p(p — 1)/2 unique
polychoric correlations per group, making a total of 2pc + p(p — 1) sample
statistics. For LISREL, we have 2p sample means across variables and
groups. We also have p(p + 1)/2 unique polychoric covariance matrix
elements in each group, making a total of 3p + p? sample statistics. The
baseline model df calculation for Mplus is then

df =2pc+pp—-1)-2p(c+1)=p*-3p.
The baseline model df calculation for LISREL is then
df =3p + p* = 6p = p> = 3p.
In spite of the different models used for the two programs, their df values for

the baseline model are identical. Note also that the df value does not depend
on ¢, the number of thresholds, in this case.

Table 1
Parameter Count for the Baseline LISREL and Mplus Models®

Parameters Mplus LISREL
Thresholds 2pc —p — 1 0
Intercepts 0 2(p-1)
Loadings 2 - 1) 2(p-1)
Factor means 1 2
Factor Cov Matrix 2 2
Unique variances P 2p
Scaling factors 0 0
Total Count 2p(c+ 1) 6p

* Assumes two groups, one common factor, ¢ > 1, p = number of measured variables, ¢ = number
of threshold parameters per variable. The Mplus count uses the theta parameterization.
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Illustrations

To illustrate the use of both LISREL and Mplus in testing factorial
invariance in ordered-categorical data, simulated data were created so that the
model underlying the data could be known. The generation of the data is
described in Appendix B. In all cases, two independent groups were created
with n,_= 5000 observations per group. Single-factor models for six measured
variables were used throughout. All measured variables were simulated to
have four possible values (0, 1, 2, 3), requiring ¢ = 3 threshold parameters per
variable.

Three models were used to create three separate sets of data for
purposes of illustration. All parameter values are given in Appendix B. The
three models, denoted as “true” models in the sense that they generated the
data, are:

True Model One. Full factorial invariance holds in this model, with Vi
=V, forj=1,..,p, A, =A, 7, =17, ,and O, = 0. Group differences in
factor means k, and factor variances ¢, are present.

True Model Two. Thresholds are not invariant in this model. The
invariance status of all other parameters is identical to that of True Model
One.

True Model Three. Unique variances are not invariant. The invariance
status of all other parameters is identical to that of True Model One.

The first model above represents the fully invariant case. It is anticipated
that both programs will indicate full invariance under this model. The second
model above permits group differences in thresholds. LISREL should have
some difficulty with this model because group differences in thresholds are not
permitted within the LISREL specification. The third model permits group
differences in unique factor variances. Both programs should detect these
group differences. The results obtained using LISREL and Mplus in data
generated by each of the above three models are described below in turn.

True Model One

Table 2 gives the fit results provided by LISREL for a sequence of four
models fit to the data generated under True Model One. The first model is
the baseline model described earlier in which all thresholds are fixed at
values that are invariant over groups. No other invariance constraints are
imposed, except that the loading of the first variable is fixed to one, and its

492 MULTIVARIATE BEHAVIORAL RESEARCH



R. Millsap and J. Yun-Tein

Table 2
LISREL Fit Results for True Model One

Model Chi-square df  p-value RMSEA CFI
Baseline 8.82 18 .96 0 1.00
Invariant A 13.34 23 .94 0 1.00
Invariant A, T 14.08 28 .99 0 1.00
Invariant A, 7, ® 26.88 34 .80 0 1.00

Note. A = factor loadings, T = latent intercepts, @ = unique factor covariance matrix.

corresponding latent intercept is fixed to zero. Using earlier results, the df
for this baseline model should be p?> — 3p = 6> — 3p(6) = 18. The second
model adds invariance of the loadings to the baseline model. No loadings are
fixed in this model, but the intercept that was fixed in the first model is fixed
here as well. The factor variance in the first group is fixed to one to set the
scale. The third model adds invariance of the latent intercepts to the second
model. No intercepts are fixed in this model. The factor mean is fixed to
zero in the first group. The fourth model adds invariance of the unique factor
variances to the third model. As expected given the invariant nature of True
Model One, all fit statistics in Table 2 for each of the four specified LISREL
models indicate retention of the null hypothesis of perfect fit.

Table 3 gives the fit results for the same data, as provided by Mplus.
Four models were fit to the data using Mplus. The first model is the baseline
model for Mplus as described earlier. This baseline model includes partial
invariance on the thresholds, a structure for the loadings that is identical to
that used for the baseline model in LISREL, fixed zero values for the latent

Table 3
Mplus Fit Results for True Model One

Model Chi-square df  p-value RMSEA CFI
Baseline 8.81 18 .96 0 1.00
Invariant A 12.39 23 .96 0 1.00
Invariant A, v 19.20 34 .98 0 1.00
Invariant A, v, ® 26.17 40 .96 0 1.00

Note. A =factor loadings, v = thresholds, ® = unique factor covariance matrix.
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intercepts in all groups, and a fixed zero value for the factor mean in group
one only. The partial threshold constraints require the first finite threshold
for each variate to be invariant, and the second threshold for the first variable
to also be invariant. The second model adds invariance constraints on the
loadings to the baseline model, as done in the second model under LISREL.
No loadings are fixed in this second model. The factor variance in group one
is fixed to one. The third model adds complete invariance in the thresholds to
the second model. The fourth model adds invariance constraints on the
unique factor variances.

The fit results in Table 3 demonstrate that the four models cannot be
rejected, as expected. The chi-square values for the first two models are
close to those given by LISREL. The third model in Mplus has df equal to
that of the fourth model in LISREL, but different chi-square values are
obtained. Models three in LISREL and Mplus both imply that for a given
factor score, we expect the same latent response variate scores across
groups. These models have different df values however because Mplus
fixes all latent intercepts to zero. LISREL imposes invariance on the
intercepts but estimates the common values of the six intercepts.

True Model Two

Tables 4 and 5 give the LISREL and Mplus results respectively in data
generated by True Model Two. True Model Two permits some thresholds to
have different values in the two groups (see Appendix B). The LISREL
baseline model in Table 4 constrains all thresholds to invariance, but the fit
results show that LISREL does not detect group differences in thresholds
under the baseline model. Models two and three in LISREL are rejected
statistically by the chi-square test of exact fit. The RMSEA values for these
models are within the bound of .05 used to denote a good approximation

Table 4
LISREL Fit Results for True Model Two

Model Chi-square df  p-value RMSEA CFI
Baseline 18.66 18 41 .003 1.00
Invariant A 130.25 23 <001 .031 .99
Invariant A, T 270.50 28 <001 .042 98
Invariant A, 7, ®  860.17 34 <.001 .070 93

Note. A = factor loadings, 7 = latent intercepts, ® = unique factor covariance matrix.
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Table 5
Mplus Fit Results for True Model Two

Model Chi-square df  p-value RMSEA CFI
Baseline 19.60 18 .36 .004 1.00
Invariant A 26.79 23 27 .006 1.00
Invariant A, v 1244.64 34 <001 .084 .89
Invariant A, v, ® 1387.53 40 <001 .082 .88

Note. A =factor loadings, v = thresholds, @ = unique factor covariance matrix.

(Browne & Cudeck, 1993). Only model four yields both a significant chi-
square value and an RMSEA value that would reject a close fit. Given the
increment at model four, researchers might erroneously attribute the poor fit
to group differences in unique factor variances, rather than thresholds.

The Mplus results in Table 5 reveal a different pattern. The baseline
model fits well here, given partial invariance of the thresholds. When the
loadings are constrained to invariance in model two, the model is again
retained, implying no group differences in loadings. Model three adds full
invariance of the thresholds, and is rejected in both tests of exact and close
fit. Mplus can properly distinguish between group differences in loadings and
group differences in thresholds. Model four is also rejected, given that this
model retains the threshold constraints.

True Model Three

Tables 6 and 7 present the fit results for the LISREL and Mplus models
respectively in data generated by True Model Three. True Model Three is
identical to True Model One, except that group differences in unique factor
variances are present (see Appendix B). The LISREL fit results in Table 6
show that the baseline model fits well by both tests of exact and close fit.
Models two and three also fit well, as neither of these models place
constraints on the unique factor variances. Model four is rejected by both
tests of exact and close fit. This model requires invariance of the unique
factor variances. LISREL properly locates the source of the group
difference in model parameters.

The Mplus results in Table 7 reveal a similar pattern. The baseline model
and model two are each retained by the exact fit test. Model three includes
full invariance constraints on both thresholds and loadings, leading to an
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Table 6
LISREL Fit Results for True Model Three

Model Chi-square df  p-value RMSEA CFI
Baseline 19.00 18 .39 .003 1.00
Invariant A 27.02 23 .26 .006 1.00
Invariant A, T 31.61 28 .29 .005 1.00
Invariant A, 7, ®  434.42 34 <.001 .049 .95

Note. A = factor loadings, T = latent intercepts, @ = unique factor covariance matrix.

increase in the chi-square statistic that approaches statistical significance. The
model is not rejected by the close-fit indices. Model four adds invariance
constraints on the unique factor variances, and is rejected by the exact-fit test.
Mplus is able to detect the violation of invariance that is located in the unique
factor variances.

Discussion

The multiple-population extension of the factor model for ordered-
categorical measures is a neglected topic in the literature on factor analysis.
The first goal of this article was to fully describe this model, especially with
respect to model specification and identification. It was shown that the
definition of factorial invariance in this model must incorporate general notions
of measurement invariance. New results on model identification were also
given. The second goal of the article was to illustrate the use of the model
within two major software programs, LISREL 8.52 and Mplus 2.12. The

Table 7
Mplus Fit Results for True Model Three

Model Chi-square df  p-value RMSEA CFI
Baseline 19.27 18 .38 .004 1.00
Invariant A 20.77 23 .60 0 1.00
Invariant A, v 45.92 34 .08 .008 .999
Invariant A, v, ® 639.71 40 <.001 .055 .929

Note. A =factor loadings, v = thresholds, ® = unique factor covariance matrix.
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model specifications used by these two programs were described and
contrasted. Large simulated datasets were used to show how the two
programs handle different violations of invariance.

The definition of factorial invariance in the ordered-categorical case
differs from the definition in the continuous case in several respects. First,
the threshold parameters are a new potential source of violations of
invariance in the ordered-categorical case. Second, the factor model itself is
only indirectly connected to the measured variables in the ordered-categorical
case. In the continuous case, one can argue that the requirement of
invariance in the factor model has intrinsic value because the model has a
direct connection to the observed means and covariance structure. In the
ordered-categorical case however, no direct connection exists, and
distributional assumptions play a major role. If the latent response variates
are not multivariate normal, invariance in the thresholds and in the factor
model parameters will not guarantee measurement invariance for the
measured variables. Higher-order moment structure in the latent response
variates must be considered in such cases, making the study of invariance
more difficult.

Appendix A described sets of identification constraints that are sufficient
to identify the factor model under congeneric factor structures. The
identification constraints for the non-congeneric case will usually be
sufficient for identification, but may fail to be so in some cases, as explained
in Appendix A. The identification constraints presented in Appendix A are
also minimal in the sense that identification will ordinarily be impossible with
fewer constraints. Should investigators routinely begin invariance studies
with a model that includes minimal constraints, or should a more constrained
model be taken as the starting point? The advantage of the minimal
constraint approach is that if the baseline model fails to fit, the number of
alternative explanations for the misfit is reduced. On the other hand, prior
experience with the measured variables may suggest which parameters are
responsible for violations of invariance. In this case, a more constrained
model that focuses on the parameters in question may be more useful. The
choice of baseline model in practice will be determined in large part by the
investigator’s prior knowledge of the measures under study. When prior
knowledge does not point to a specific source for the violation of invariance,
the minimal constraints in Appendix A are useful.

Are the constraints given in Appendix A unique in any sense? There will
nearly always exist alternative sets of constraints that will identify the model.
For example, many choices of p + r thresholds in the polytomous, congeneric
case could be constrained to invariance. This situation is not unusual. In the
traditional factor model, many sets of 7* loadings can be used for model
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identification, and the ordered-categorical case is no different. Given that
alternative sets of constraints exist, do the alternative sets yield equivalent fits
for the resulting models? We expect to find equivalent fits generally, but there
is no guarantee. Experience with the traditional factor model has shown that
alternative sets of identification constraints may yield different fits in
applications, expecially when the specified model is incorrect (Millsap, 2001).

Model specification and fit evaluation within two software packages,
LISREL 8.51 and Mplus 2.12, were illustrated using simulated data. As
shown, the two programs use different model specifications at baseline. These
different model specifications have consequences for each program’s
sensitivity to violations of invariance. LISREL’s baseline model includes full
invariance constraints on the thresholds. As a result, LISREL is unable to
evaluate whether thresholds differ across groups, and so group differences in
thresholds may be mistaken for group differences in other model parameters,
as shown in the examples. This limitation in LISREL is potentially serious for
invariance studies because ordinarily we have no reason to expect that all
thresholds are invariant. LISREL’s inclusion of nonzero intercepts, with the
potential for varying intercepts across groups, could be used in an attempt to
model group differences in thresholds that are confined to shifts by a constant
amount across groups. In practice, this attempt is likely to be only partially
successful whenever threshold differences across groups vary depending on
which threshold is considered. Conversely, group differences in intercepts
could be absorbed in Mplus by permitting group differences in thresholds, but
invariance in some thresholds prevents full absorption. To model group
differences in intercepts in Mplus, Muthen and Asparouhov (2002) indicate
that nonzero intercepts can be introduced into the Mplus model with ordered-
categorical indicators. On balance, Mplus appears at present to offer a more
flexible system for invariance modeling in ordered-categorical data.

Estimation issues in the ordered-categorical factor model have not been
addressed in this article. While WLS estimation was used in the examples,
this method is known to require very large samples for adequate
performance (Boomsma & Hoogland, 2001; Muthén & Kaplan, 1985).
Large simulated datasets were used in the examples for this reason. In the
modest samples typically available in practice, which estimation method
should be used? Mplus offers several alternative methods for ordered-
categorical data that appear to work well in modest samples (Muthén, du
Toit, & Spisac, in press; Satorra, 1992; Satorra & Bentler, 1994).
Diagonally-weighted least squares (DWLS) estimation is available in both
Mplus and LISREL. This method is more practical than WLS when the
number of variables is modest or large. A different approach to the problem
is to rely on normal-theory maximum likelihood, with adjustments to the
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standard errors and to the chi-square fit statistic for nonnormality (Satorra,
1993a, 1993b).

The examples illustrated the use of a particular sequence of model fit
evaluations that began with tests of invariance for loadings, followed by
either tests of invariance for thresholds (Mplus) or intercepts (LISREL).
The last model evaluated included invariance constraints on unique factor
variances. In practice, researchers may wish to modify this sequence by
adding further model fit evaluations. For example, preliminary tests to assess
whether the factor loadings fit the congeneric pattern in all groups may be
conducted prior to the test of loading invariance. Preliminary tests of this
sort are likely to be useful in multiple-factor models. When a set of
invariance constraints is rejected, the researcher may attempt to locate the
source of the violation through a series of invariance tests on individual
parameters. If the invariance of the factor loading matrix is rejected for
example, the next step is to determine which loadings vary across groups.
One approach to this search is to begin with invariance constraints on all
loadings, relaxing the constraints sequentially to improve fit until no further
meaningful improvement is found. A second approach is to begin with no
invariance constraints apart from those needed for identification, and add
constraints sequentially until the fit begins to deteriorate significantly. It is
not clear whether these two strategies will arrive at the same solution in
practice. Furthermore, when the number of variables is large, sequential
explorations of this type may produce models that fail to cross-validate.
These problems are not unique to the ordered-categorical factor model, but
the presence of many threshold parameters in this model in the polytomous
case may worsen the problem. Here the researcher will benefit greatly from
any psychological theory that can be applied to suggest the location of
potential violations of invariance.

Finally, it is worth noting that item response theory (IRT) offers an
alternative modeling approach for ordered-categorical measures in multiple
populations. No continuous latent response variates are invoked in the IRT
approach. Instead, an IRT model directly expresses the conditional
probability of achieving a score on the observed measure, given the person’s
standing on a (generally) unidimensional latent trait. Relationships between
the parameters of some IRT models and those of the single-factor model for
ordered-categorical measures are known. Similarly, relationships between
the parameters in the multiple-factor model and some multidimensional IRT
models are known, although multidimensional IRT models are not yet widely
used in practice. For discussions of the relationship between the IRT and
common-factor models, see Lord and Novick (1968), Takane and de Leeuw
(1987), Muthén and Lehman (1985), or McDonald (1999).
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Appendix A

Identification conditions are here described for multiple-group
confirmatory factor analytic models in ordered-categorical data. The
conditions to be described are sufficient for identification, with one exception
that is explained below. In describing the identification conditions, we
consider four cases formed by the cross-classification of two binary
classifications. The first classification concerns the number of scale points in
the variables being modeled: dichotomous (¢ = 1) or polytomous (¢ > 1). The
second classification concerns the structure of the factor pattern matrix:
congeneric or non-congeneric. Congeneric patterns require each variable to
have only one nonzero loading. Any single-factor model is congeneric, as are
multiple factor models whose pattern matrices have one nonzero element per
row. All other factor structures are non-congeneric.

The Polytomous Congeneric Case

We assume here that each factor is defined by at least three variables or
indicators. Cases in which a single variable defines the factor can still be
handled, but the two-variable case would require some additional constraints
beyond those considered here. Using notation defined earlier, sufficient
conditions for identification of the factor model are:

1. Fix w, =0 and diag( %, ) = Iin one group.

2. Fix k, = 0 in the above group.

3. Fix 7, = 0 in all groups, and pick one variate per factor to use as a
reference variate, fixing that variate’s loading on that factor to one. All other
loadings for the reference variate are fixed to zero. These loading
constraints are imposed in all groups.

4. For some chosen value of m, require that View = Vi for all k, with j =1,

., p- In addition, require a second threshold to be invariant for each reference
varlate. Together, these constraints involve p + r thresholds in each group.

To show that the above four sets of constraints are sufficient to identify
the factor structure, first note that condition 1 implies identification of all
thresholds in the group referenced in condition 1. The response variates are
standard normal variates in this group, and estimates for all thresholds are
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formed as percentiles from the standard normal distribution based on the
observed frequencies for X, the measured variables. A second consequence
of condition 1 is that all thresholds that are constrained to invariance in
condition 4 are now identified, using values from the group referenced in 1.
The constraints in conditions 2 and 3 are sufficient to identify (A, ®,, O, k,,
7,) in the group referenced in 1 (e.g., Bollen, 1989). All model parameters in
this group are now identified.

Next, consider the group not referenced in condition 1. For any latent
response variate in which two thresholds are identified and estimated, we can
find pL;k and the corresponding diagonal element of 3, , denoted (riz . To see
this, let Vi and Vi be the two identified thresholds, and define new
“standardized” thresholds

* Ed
Vo W V. —
_ _ Jkm Jjk _ ks jk
(A1) L =" L=
(O
Jk

These standardized thresholds would apply if the j® variate is transformed to
standard score metric. We can estimate z, ~and Ly directly using the
observed frequencies on X, as percentiles of the standard normal distribution.
Hence Equation A1 represents two linear equations in the two unknowns pu_’}k
and ¢, . We can solve for w, and o, . The solutions for w’, for each of
the r reference variates immediately lead to a solution for K, because

(A2) W= Ak,

and the r elements of pw, whose solutions were found correspond to fixed
unit elements in A, due to condition 3. Hence k, is equated to the vector of
means for the latent reference variates.

Next, consider any pair of latent response variates that share a common
factor, and for whom only one threshold per variate is known, given the
invariance constraints in condition 4. Let these variates be variates 4 and g.
For these two variates, the identified (i.e., invariant) thresholds can be
expressed in standardized form as

VYV, — p,* v, —
_ gl gk _ Vi T M
(A3) ngl - * ’ th[ - * s

O-gk

where the first threshold has been designated as the invariant threshold for
purposes of argument, and the group subscript has been dropped from the

MULTIVARIATE BEHAVIORAL RESEARCH 503



R. Millsap and J. Yun-Tein

raw thresholds to denote invariance. The standardized thresholds in Equation
A3 are directly estimable, as argued earlier. Also, we know from the factor
model that uzk = )\ngk and pf,;k = N\, K,, where K, is the factor mean for the
factor containing variates g and 4. All factor means are identified, and after

substituting these expressions in Equation A3, and rearranging, we have

o vgl Ky _
(A4) O'gk————7\gk—dg+fg)\gk,
g1 Zgki
. v K
< _ Vi k _
(AS) O = - N =dy + filhy,-
Zner Zhkd

Note that dg, fg , d,, f, are identified in the above by previous arguments; the
group subscripts on these quantities have been dropped for convenience in
what follows. The factor model also implies that the polychoric correlations
Tk and Fy Can be written

N, A
(A6) rghk — gk hkcpk ,
(dg + fg)\gk )(dh + fh)\hk )
N i
(A7) T =
’ O i (dh +fh)\hk)

where ¢, is the variance of the factor common to variates g, 4, and j, with
variate j being the reference variate for this factor. The polychoric
correlations in Equations A6 and A7 are directly estimable. Also, the
variance Uiz is identified as noted earlier. We can rearrange the above
expressions

(AS) rghk — A’
Oulim Ao T fhy

gk

=Gonk»

with ¢, being estimable. Equation A8 leads to an expression for the factor
loading A, in terms of identified quantities as
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q ghk dg

(A9) N =—"—"—.
« l_qghkfg

This factor loading is identified. Proceeding analogously, we can extend the
above series of operations to derive expressions for all nonzero loadings that
do not correspond to reference variates. All factor loadings in A are
therefore identified.

Once the loadings are all identified, we can give expressions for all
remaining elements of p, using the identity in Equation A2. This expression
establishes identification for . Identification of the factor loadings also
leads to identification for all diagonal elements of 2, using Equations A4 and
AS. All off-diagonal elements in 3, are then identified using expressions
involving the polychoric correlations. For an arbitrary pair of variates s and ¢,
we have

(A10) O-jtk = O-jk Ufk Ve -
We also know from the factor model that
(Al 1 ) O:;rk = )\sk )\zkcpstk ’

where ¢ is the factor covariance between the factors corresponding to
variates s and ¢ if these variates load on separate factors. If variates s and ¢
load on the same factor, ¢, is the corresponding diagonal element of ®,.
Given that all loadings are identified, we can identify all elements of ®,
through Equations A10 and All. Next, we can identify all unique factor
variances through the relation @, = 3 - Akd)kA;. Finally, all remaining
thresholds are identified given knowledge of g, and 3.

Mplus 2.12 introduced an alternative set of identification constraints to
those given in constraint 1. In constraint 1, the “theta parameterization” would
replace diag(%,) = I with ®_= 1, fixing the unique factor variances in the
reference group to unit values. The unique variances in other groups are
unconstrained. This alternative parameterization, together with constraints 2-4,
is also sufficient for identification.

To understand this point, consider the group referenced in 1. An
expression for the m™ standardized threshold of a reference variable in this
group using the theta parameterization is

(A12) Ly = =—F—,
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where ¢ is the variance of the common factor on which the j* variate loads
in the k™ group. Note that the factor loading is fixed to one for the j* variate
in constraint 3. For the g" latent response variate that shares a common
factor with the j™ variate, the standardized threshold is

vék}'ﬂ _

(A13)

gkm -

\/Agkcp\k+1

Considering a third latent response variate, the 4™ variate that also shares a
common factor with the j* and g™ variates, we can write expressions for
three polychoric correlations as

(‘Psk)\gk

¢, +1, ”\ik‘Psk +1

PN

(Psk +1 V)\ikcpsk +1

xwxy@w
ghk N
\/)\gk‘Psk + 1\/)\ik(‘P:k +1

(Al4) e =

(A15) Bk =

(A16)

These polychoric correlations are directly estimable, and so the ratio

r

(A17) B L

Toi Vi P

¢, +1

’

provides an estimate for ¢ . All other diagonal elements of ®, are found
analogously. The correlation between any pair of reference variates, say the
Jj™ and i variates, is

¢ stk

(A18) jk = \/(psk +1\/(ptk +1 .

This correlation is directly estimable, and coupled with the estimated values

for ¢ and ¢,, we are led to an estimate for ¢ ,. In this manner, the full
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factor covariance matrix @, is identified. Using appropriate elements of ®,,
all raw thresholds for the reference variates are identified using Equation
A12. Furthermore, all factor loadings in A, now become identified using the
polychoric correlations in Equations A14 and A15. Having identified all
loadings, the covariance matrix 3, is now identified, as are all remaining
thresholds using Equation A13. We have now identified all factor models
parameters and thresholds in the group referenced in constraint 1. The
identification proof for the remaining groups then proceeds as in the
foregoing case that used the diag( ¥, ) = I constraints.

The Dichotomous Congeneric Case

The dichotomous case implies that only one threshold parameter is
needed for each latent response variate. The constraints in 4 under the
polytomous case cannot be fully implemented in this case. An alternative set
of constraints that replace 4 from the polytomous case are

4d. Fixv, =v forallk, withj=1,.., p.

5d. In all groups besides the group used in constraint 1, fix » diagonal
elements of 3, to unit values. The chosen r elements should correspond to
the reference variates in constraint 3.

The combination of constraints 1, 2, and 3 from the polytomous
congeneric case, and 4d, 5d above, is sufficient to identify all model
parameters. To understand this point, first note that 1 and 4d result in
complete identification of all threshold parameters in all groups. Consider the
standardized thresholds corresponding to the reference variates in 3
(A19) G = Vi = P
since cr';k = 1 in these cases by constraint 5d. These standardized thresholds
are directly estimable, and because the raw thresholds are themselves
identified, we can identify pf;.k . Then given constraint 3 and Equation A2, we
can identify k,.

From this point, the proof of identification for the remaining parameters
proceeds in the same fashion as in the polytomous case. We again pick
variates g and / that share a common factor but are not reference variates.
Using expressions essentially identical to Equations A3 to A9 but involving
tetrachoric correlations, we can demonstrate that all factor loadings are
identified. Identification of the loadings leads to identification of the latent
variate means in Equation A2. The remaining diagonal elements of 3, are
then found using relations as in Equations A4 and AS5. The off-diagonal
elements of X, are found using expressions as in Equation A10. Equation
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A1l then yields identification for the elements in ® , and we can then identify
the unique factor variances in ©,.

The theta parameterization in Mplus 2.12 provides an alternative route to
identification that parallels the polytomous congeneric case. As in the
polytomous case, we replace the condition diag( %, ) = I in constraint 1 with
O, = I for the group defined in 1. The dichotomous case requires a further
change however: we replace 5d with the requirement that r diagonal
elements of @, be fixed to unit values in all groups. The chosen r elements
should correspond to the reference variates in 3.

Proof of identification in this dichotomous case proceeds as in the
polytomous case under the theta parameterization. Equations A12 and A13
again display the standardized threshold parameters of a reference variable
and a non-reference variable respectively. The ratio in Equation A17 is
again formed using the (now) tetrachoric correlations in Equations A14-A16.
The ratio leads to identification for diag(®,), with the off-diagonal elements
identified by the tetrachoric correlations in Equation A18. Identification of
®, leads in turn to identification of the raw thresholds in Equation A12 for the
reference variates. Ultimately, both the factor loadings A and the elements
of %, are identified for the group referenced in constraint 1.

For the remaining groups, all threshold parameters are identified given
4d. A general expression for the standardized threshold of the j® latent
response variate is

V. — *.
(A20) ;= S P

O-jk

with w7, =Nk, and o7 = N, + 8,, and with K, being the fa'ctor mean
and ¢, being the factor variance for the factor on which the j* variate loads.
If the j™ variate is a reference variate, Equation A20 reduces to

v, —K,
(A21) 2y =— ,
¢, +1

and if the j* variate is not a reference variate, we have

v —)\ijk

A22 7, = .
(A22) o, 40,
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Consider a set of three measures that share a common factor. The
tetrachoric correlation between the g™ and j™ measures is

_ )\gk)\jkq’k

* *
040 5

(A23)

gk

Then it can be shown that if the j* variate is a reference variate,

(A24) rghk — Py +1
Toit Thjk ¢

leading to identification for diag(®,). Once these diagonal elements are
identified, the factor mean vector k, is identified using the reference variable
threshold expressions in Equation A21. The remaining elements of @, are
identified using the expression for the tetrachoric correlation between any
pair of reference variates

(P.rrk
A25 Ty = ,
( ) " ¢, t1{e, +1

where the i and j™ response variates are reference variates.

Next, we can identify the loadings A, by considering the correlation
between any reference variate and another variate that shares a common
factor with the reference variate. Letting the j® variate be the reference
variate, we have

_ )\gk‘Pk

(A26)

r.
jgk * 9
O kO gk

where ¢, and O'j-k are already identified. From the threshold expression for
the g" variate, we have

# ng Kk

(A27) ol = -,
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Substituting Equation A27 into the tetrachoric formula in Equation A26, only
one unknown remains, leading to identification for A . This process can be
repeated for all non-reference variates, leading to full identification of Ak.
Finally, the free elements of ®, can be identified through the threshold
expressions in Equation A22. Identification of X, is also achieved.

The Polytomous Non-congeneric Case

Here we permit arbitrary structure in A, with no requirement that each
variate loads on only one factor. This general structure presents identification
problems even when the measured variables are continuous in scale. While
sufficient conditions for rotational uniqueness are known for this case, full
identification conditions that are minimal in some sense are unknown
(Anderson & Rubin, 1956; Shapiro, 1985). The identification problem has been
solved for some special cases, but no solution is known for arbitrary r and p.
We will not solve this problem here. Instead, we offer conditions that are
sufficient to identify all threshold parameters and all parameters (., ,3, ).
The conditions are sufficient for rotational uniqueness in the parameters (A,
®,), and will usually be sufficient for identification of all model parameters,
especially when r is small relative to p (Shapiro, 1985). The conditions are

1. Fix p, =0 and diag( ¥, ) =1in one group.

2. Fix k, = 0 in the above group.

3nc. Fix 7, = 0 in all groups, and impose constraints on A, that will
render A, to be rotationally unique within each group. These constraints can
take several forms (Bollen & Joreskog, 1985; Joreskog, 1979; Millsap, 2001).
A common choice is to pick r rows of A, to fix as rows of an r x r identity
matrix.

4nc. Pick two thresholds per response variate to constrain to invariance:
Viw = Vi for all k, with j =1, ..., p and for two values of m.

Given conditions 1 and 4nc, we can identify two thresholds per response
variate, for all variates. As a result, the parameters p, and the diagonal
elements of 3, are all identifiable using the two-threshold argument made
earlier. The off-diagonal elements of 3, are then estimable by rescaling the
polychoric correlations as in Equation A10. All remaining thresholds are then
estimable and identified.

Given that 3, is estimated in each group, we can use the constraints in
condition 3nc to yield estimates for (A,, @, ©,) in most cases. Cases in
which this cannot be done are cases in which the conditions for rotational
uniqueness do not fully identify the factor model. Such cases would require
individual study, and further constraints. Once estimates for A, are
available, we can identify k, from Equation A2.
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The theta parameterization in Mplus 2.12 replaces diag(%, ) = I in
condition 1 with @, = I. All other constraints remain the same. The proof of
identification under the theta parameterization begins with the group
referenced in 1. Within this group, the correlation matrix for the latent
response variates is written as

(A28) R, =AA® A, +DA =AAD A, A + A7,

with A, = Dy” being the diagonal “scaling matrix” in Mplus. We can
generate a factoring of R, for r factors as

(A29) R, =POQP +W,

with W a p x p diagonal matrix, £, an r x r factor covariance matrix, and P,
a p x r loading matrix. We assume that this factoring is unique given
sufficient constraints on (P, €) to yield rotational uniqueness. This
assumption is violated when rotational uniqueness does not lead to general
identification of the factor model as discussed earlier. Relating the factoring
in Equation A29 to the model in Equation A28, we can set A} = W,. This
identifies diag(3;, ), and we can identify the full matrix 3, through a
rescaling of Rz. Given that EZ is identified, we can identify all thresholds
using Equation A12. The matrix ®,_ is then identified using the submatrix of
3, corresponding to the covariance structure for the r reference variates.
This step is possible if the uniqueness constraints in condition 3 fix an r X r
submatrix of A, to an indentity matrix. Finally, consider the partitioned
structure of 3, under these uniqueness constraints:

> D +1 DA,

(430 CIALD ALBA I

Let 3, = A @, be the (p — r) x r submatrix of covariances between the r
reference variates and the p — r other variates. We can then identify
A using 3. . ®'.  This identifies all model parameters in the group
referenced in condition 1.

Turning to the other groups, we have two invariant and identified raw
thresholds per latent response variate from the foregoing arguments in the
group referenced in condition 1. These two thresholds permit identification
of w, and diag(%,). Having the latter, we can identify 3, through the
rescaling of R,. Also, we can identify i, from p, using the r reference
variables, whose loadings are fixed to unit values. All remaining thresholds
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are identified given knowledge of w, and 3, . Finally, assuming that the
constraints for rotational uniqueness are sufficient for global identification of
the factor model, we can factor Ez to obtain

(A31) 3 =AD A, +0,

with an r x r submatrix of A, being fixed to an identity matrix. We have
then identified A, ® , and ©,. This step completes the identification.

The Dichotomous Non-congeneric Case

Here we have only one threshold per variate, and the general structure
for L, noted in the previous polytomous case. We cannot implement the
constraints in 4nc because only one threshold per variate is available. We
therefore replace 4nc with

4d. Fix View = Vi for all k, withj=1, ..., p.

Sdnc. In all groups besides the group used in 1, fix all diagonal elements
of X, to unit values.

Combining conditions 1, 2, and 3nc defined earlier with 4d and 5dnc given
here, all model parameters can be shown to be identified apart from the
problem of rotational uniqueness versus full identification explained earlier for
the polytomous non-congeneric case. Under condition Sdnc, all elements of
EZ are directly estimable as tetrachoric correlations. Constraints 1 and 4d
render all threshold parameters to be identified. The means p, are then
identified using expressions for the standardized thresholds, which are
themselves directly estimable as noted earlier. Given estimates for (, ,
EZ ), we can ordinarily obtain estimates for (Ak, D, ®k) using the constraints
in 3nc. Estimates cannot be obtained if the conditions for rotational
uniqueness do not lead to full identification of the model. Such cases would
require individual study and further constraints. Once estimates of A, are
available, we can identify K, using Equation A2.

Under the theta parameterization in Mplus, we replace diag(3,) = 1
with ®k = L. In addition, we replace 5dnc with the requirement that in all
groups, @ = L. In other words, the unique factor variances are fixed to unit
values in all groups, and for all variates. Taken together with the other
constraints 2, 3, 4d, these constraints will identify the model parameters apart
from the limitations on identification for the factor model generally. The
proof parallels the polytomous case. We begin in the group referenced in 1
with the factorization in Equation A29, leading to identification of diag( X, ).
The rescaling of R} in turn leads to the full covariance matrix 3, . We also
identify all thresholds using 3, in Equation A12. We can identify ®, using
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the submatrix of ¥, corresponding to the r reference variables, as shown in
Equation A30. The loadings A, are then identified via the same reasoning
described earlier for the polytomous case. All model parameters are now
identified in the group referenced in 1.

For the other groups, all thresholds are identified using 4d. We can
identify diag(3,) using the factoring argument that was used above.
Knowledge of diag(3;, ) leads to a rescaling of R, that identifies the whole
matrix 3, . The factor mean vector k_is identified given X, and the
threshold equations for the reference variates. The covariance matrix ®, is
identified using the reference variate submatrix in Ek , as shown in Equation
A30. Finally, the loadings A, are identified using the same arguments used in
the polytomous case.

Appendix B

All simulated data were created using Splus 2000 (Mathsoft, 1999).
Data were simulated under a series of three single-factor models
representing varying levels of factorial invariance. In all cases, data were
generated for two independent groups, with n, = n, = 5000. This large
sample size was chosen to minimize sampling variability and to achieve
adequate performance using weighted least squares (WLS) estimation. Data
were simulated to create p = 6 ordered-categorical measured variables in all
models, using the latent response variate and threshold formulation described
earlier. Within a given model, the steps in the simulation were as follows.

1. For group 1, generate a random common factor score §, from a
normal (k,, ¢,) density.

2. For group 1, generate a p X 1 random vector u, of unique factor
scores from a MVN(0, I) density. These unique factor scores are generated
independently of step 1.

3. Calculate X, = 1'1 +AE + 0 u,

4. Create forj =1, ..,0, Xl..] =mif v.] = X,ﬂ <V where m =0, 1,
2,3 with v, ®and v, = +%

5. Repeat steps 1- 4 n = 5000 times, creating a 5000 x 6 data matrix X,
for group 1.

6. Repeat steps 1-4 n = 5000 times using parameter values for group 2,
creating another 5000 x 6 data matrix X, for group 2.

The data matrices X, and X, were used as input to PRELIS and to
Mplus. Steps 1-6 were executed three times, once under each of three
models. In all models, k, =0, ¢, =1 in the first group, and k, = .25, ¢, = 1.2

MULTIVARIATE BEHAVIORAL RESEARCH 513



R. Millsap and J. Yun-Tein

in the second group. Factor loadings and intercepts are invariant in all
models, with

25
25
.50
S0
.70
.70

(B1) A=

s onn

All other model parameters varied, depending on the model. The parameter
values used in each of the three models are given below. Note that in the
baseline models that were fit to the simulated data, one loading was fixed to
one for identification. This constraint was dropped once the loadings were
constrained to invariance because the factor variance in group one was fixed
to one in any model with invariant loadings. Also, in all models fit to the
simulated data, invariance constraints used for identification purposes were
applied only to parameters that were truly invariant.

True Model One
This model represents the fully invariant factor model, with invariant

thresholds. Let v, be the 6 x 3 matrix of threshold parameters in the k"
group. In this model,

—45 25 95
—45 25 95
~30 50 1.30
(B2) ViTV2T00 50 1.20
0 70 140
-10 70 1.50

All unique factor variances were set to .30 in both groups.
True Model Two

This model was identical to True Model One, except that thresholds
were not invariant. The thresholds used in group one were as in Equation
B2, but the thresholds in group two were
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True Model Three

—-.45
—-.45
-30

=20

-.10

25
.55
.70
.50
40
.50

5
1.10
1.30

1.10]

1.30
1.60

R. Millsap and J. Yun-Tein

This model was identical to True Model One, except that the unique

factor variances were not invariant.

The variances in group one were

identical to those used in True Model One. The variances in group two were

all equal to .49.
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