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Abstract

Item parameter estimates of a common item on a new test form may change abnormally due to
reasons such as item overexposure or change of curriculum. A common item, whose change
does not fit the pattern implied by the normally behaved common items, is defined as an outlier.
Although improving equating accuracy, detecting and eliminating of outliers may cause a content
imbalance among common items. Robust scale transformation methods have recently been pro-
posed to solve this problem when only one outlier is present in the data, although it is not
uncommon to see multiple outliers in practice. In this simulation study, the authors examined
the robust scale transformation methods under conditions where there were multiple outlying
common items. Results indicated that the robust scale transformation methods could reduce
the influences of multiple outliers on scale transformation and equating. The robust methods
performed similarly to a traditional outlier detection and elimination method in terms of reduc-
ing the influence of outliers while keeping adequate content balance.
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Introduction

In many large-scale testing programs, alternate forms are typically used to ensure security and

integrity of a test. The small difference in difficulty between two test forms is adjusted through

equating to make sure the scores obtained from both test forms are comparable. When there are

common items between the two test forms, the item response theory (IRT) can be employed for

equating. The common item set, which should represent the content and statistical specifica-

tions of the entire set of items, plays a vital role in placing item parameter estimates from the

two test forms on the same scale via a scale transformation method (Kolen & Brennan, 2014).

For the scale transformation method to work, it is assumed that the common items perform

similarly on both test forms and the parameter estimates only differ because of indeterminacy

of the IRT scale and sampling error. If the parameter estimates differ because of other reasons,
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such as curriculum change or item overexposure, including the outlying common items (or out-

liers in short) may distort scale transformation and thus undermine the accuracy of equating

results (Cook & Eignor, 1991). Therefore, the outliers should be treated before the scale trans-

formation and equating procedures are conducted.

The research literature has shown many efforts in solving the problem with detecting and elimi-

nating of outlying common items before the scale transformation and equating (e.g., DeMars, 2004;

Donoghue & Isham, 1998; Guo, Zheng, & Chang, 2015; Holland & Thayer, 1988; Huynh &

Meyer, 2010; Raju, 1990; Veerkamp & Glas, 2000). Results from these studies have shown that the

detection and elimination of outlying common items surely improved the stability of scale transfor-

mation and increased the accuracy of IRT equating. None of these studies, however, have paid

attention to the requirement of content representativeness for common items (i.e., the common item

set should mimic the total test in terms of content). Although some researchers (e.g., Gao, Hanson,

& Harris, 1999; Hanick & Huang, 2002; Hu, Rogers, & Vukmirovic, 2008; Wolkowitz & Davis-

Becker, 2015) found that the content representativeness might not significantly affect equating

results, other researchers (e.g., Cook & Petersen, 1987; Holland & Dorans, 2006; Klein & Jarjoura,

1985; Kolen & Brennan, 2014) have found that content representativeness of the common item set

had great impact on equating results particularly when the examinee groups were different in abil-

ity. For this reason, Hanson and Feinstein (1997) suggested removing outliers only when the prac-

tice would not harm the content representativeness. In addition, ignoring content representativeness

of the common items (aka anchor items) might violate Standard 5.15 by the American Educational

Research Association, American Psychological Association, and National Council on Measurement

in Education (2014, p. 105):

In equating studies that employ an anchor test design, the characteristics of the anchor set and its simi-

larity to the forms being equated should be presented, including both content specifications and empiri-

cally determined relationships among test scores. If anchor items are used in the equating study, the

representativeness and psychometric characteristics of the anchor items should be presented.

Methodologically, the outlier elimination methods divide the item set into two exclusive cate-

gories: either an outlier or a normally behaved item, depending on whether its item statistics have

changed significantly. Whether an item is an outlier or not is typically determined by practitioners,

and the procedure is somewhat subjective—practitioners may not agree with each other on the cri-

terion. In other words, it is difficult to obtain a consistent criterion because the outlying behavior of

an item is not simply ‘‘yes’’ or ‘‘no’’ but a matter of degree. In reality, an item can deviate in various

degrees from the pattern assumed by the normally behaved items. To take the degree of deviation

into account, He, Cui, and Osterlind (2015) proposed two robust scale transformation methods, the

Area Weighted (AW) method and the Least Absolute Values (LAV) method (see the ‘‘Method’’ sec-

tion for details), by assigning weights to items according to their distance deviated from the assumed

pattern. Specifically, small weights are given for outlying items to reduce their influence on scale

transformation, but large weights for normally behaved items so that they have a significant contri-

bution to scale transformation. Note that the detection and elimination methods can be treated as a

special case of the robust methods where the weight of each item is assigned to be either 1 or 0.

In He et al. (2015), the robust scale transformation methods were shown to be effective in

reducing the impact of an outlier on the accuracy of scale transformation and equating while

maintaining content representativeness. However, the study was limited to only one outlier in

the common item set. In practice, it is not uncommon to see multiple outliers in the common

item set. The effect of multiple outliers on scale transformation and equating is much more com-

plicated than the single outlier case. An outlier may not be identified because of the presence of
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other adjacent outliers (aka masking effect, Hadi & Simonoff, 1993), or an normally behaved

item might be falsely identified as an outlier because some outliers are so influential that they

together distort the assumed pattern (aka swamping effect, Ben-Gal, 2005). Both phenomena

make accurate detection of an outlier more challenging. Stepwise or sequential methods have

been proposed to detect and eliminate multiple outlying items by flagging and excluding one

outlier at a time (e.g., Guo et al., 2015; Hadi & Simonoff, 1993). However, these methods may

result in severe content imbalance when multiple items are eliminated from the common item

set because each content area typically includes only a small number of items. Suppose a 40-

item test, which has 10 common items, has three content areas such that each content area in a

balanced common item set has three to four items on average. If a given content area has three

items and two of them are identified as outliers, the content balance will be broken by eliminat-

ing the identified outliers. As a consequence, the authors believe that the widely used outlier

detection and elimination methods fall short when facing multiple outliers.

The purpose of this study was to evaluate the robust scale transformation methods when mul-

tiple outliers are present in the common item set. A simulation study was conducted based on

real item parameter values obtained from a large-scale testing program. IRT true score equating

method was used under the common-item nonequivalent groups equating design. The robust

scale transformation methods were compared to traditional outlier-handling methods by evalu-

ating the recovery of scale transformation coefficients and equating results. The performance of

the robust methods under different test lengths, number of outliers, and strength of outliers was

evaluated.

Method

Data

The authors constructed two tests with different lengths using real items from a large-scale

achievement test: a long test form with 120 dichotomously scored items including 40 common

items and a short test form with 45 dichotomously scored items including 15 common items.

Each test included two test forms, old and new. The authors used item parameter values esti-

mated from real data to generate data used in this study. Item responses of 3,000 simulated

examinees per test form were generated using R. The authors assumed a normal ability distribu-

tion, u ~ N(0, 1), for the examinees taking the old form. For the examinees taking the new test

forms, they assumed normal ability distribution of u ~ N(0.25, 1.12) or u ~ N(0.5, 1.22). The

generated item responses were calibrated using the BILOG-MG 3 program (Zimowski, Muraki,

Mislevy, & Bock, 2003).

Scale Transformation Methods

Under the three-parameter logistic (3PL) IRT model, the probability for examinee i with ability

ui to correctly answer item j is

pij(ui; aj, bj, cj) = cj + (1� cj)
eDaj(ui�bj)

1 + eDaj(ui�bj)
,

where aj, bj, and cj are the item parameters for item j indicating discrimination, difficulty, and

pseudo-guessing, respectively. The constant D is typically set to 1.7 to make the logistic ogive

approximate the normal ogive.
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To put item parameter estimates of the new form (denoted as F) on the scale of the old form

(denoted as T), we need to compute scale transformation coefficients A and B (i.e., slope and

intercept of a linear transformation) using the following equations:

aTj =
aFj

A
, bTj = AbFj + B, cTj = cFj,

where aTj, bTj, and cTj are item parameters on the old form scale, and aFj, bFj, and cFj are item

parameters on the new form scale. After putting the ability and item parameter estimates of the

new form on the old form scale, we can define the difference between the two probabilities (one

on the old form and the other on the new form) for the ith examinee to answer the jth item cor-

rectly as

dij = pij uTi; aTj, bTj, cTj

� �
� pij uTi;

aFj

A
, AbFj + B, cFj

� �
,

where uTi represents ability of examinee i on the old form scale.

With the Stocking-Lord method (Stocking & Lord, 1983), the scale transformation coeffi-

cients are obtained through minimizing the following loss function

L =
P

i

P
j

dij

 !2

:

The Stocking-Lord scale transformation was conducted using the computer program ST

(Hanson & Zeng, 1995).

By contrast, the robust methods minimize a different loss function

L =
P

i

P
j

wjd
2
ij, ð1Þ

where wj is the weight assigned to item j.

For the AW method, the Huber (1981) weights are used to define the weights as

wj =
1

k=jejj
jejj � k

jejj.k

�
,

where k is the tuning constant and was set to 1.345 to obtain an efficiency of 95% when the

errors are normally distributed (see Huber for details) and ej is the standardized area between

two item characteristic curves (ICCs) using median absolute deviation (MAD; Wilcox, 2012)

ej =

0:6745 �
P
q

jdqjj � Du

MAD
P

q

jdqjj � Du

 !

where q represents the quadrature points of u between –4 and 4 for item j, dqj is the difference

between the two probabilities obtained from the old form and the new form at a quadrature point

of u, the constant of 0.6745 rescales MAD to a normal distribution (see Wilcox for details), and

Du is the interval of abilities between two adjacent quadrature points.

For the LAV method, the weights are defined as 1=jdijj. The loss function in equation (1) can

then be simplified as
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L =
P

i

P
j

jdijj:

Outlier Simulation

The short form included 0, 1, or 3 common items whose parameter values were adjusted, and

the long form contained 0, 1, or 3 items whose parameter values were adjusted. In other words,

the proportion of outliers in a common item set was 0%, 6.7%, or 20% for the short test form,

and 0%, 2.5%, or 7.5% for the long test form. Here, the authors included the conditions of zero

or one item with changed b-parameter for comparison reasons in this study.

To simulate the magnitudes of item parameter change, the predetermined number of item(s)

was (were) randomly selected from the common item set when needed. Both a- and b-para-

meters of the selected item(s) were adjusted to mimic practical situations. The change of a-

parameter values followed a uniform distribution, Da ~ U(0.1, 0.5). The authors simulated two

conditions to adjust the b-parameter values: (a) small change in which the change of b-para-

meter values followed a uniform distribution, Db ~ U(–0.5, –0.1), or (b) large change in which

the change of b-parameter values followed a uniform distribution further away from zero, Db ~

U(–1.0, –0.5). After changing the item parameter values, the authors simulated the item

responses for the examinees based on the adjusted item parameter values.

Outlier Treatment Methods

There were five outlier treatment methods used in this study:

1. No Treatment. The authors used the entire common item set for scale transformation

without any special treatment. This method would show the influence of ignoring out-

liers on the accuracy of scale transformation, thus providing a baseline for the

comparisons.

2. Elimination. The a- or b-parameter estimates of the common items on the new form

were compared with those on the old form after being placed on the same scale using

the Stocking-Lord method. If the absolute difference of either a- or b-parameter esti-

mate was larger than 0.5 (He, Cui, Fang, & Chen, 2013), the item was excluded from

the common item set. The Stocking-Lord method was rerun after removing all outliers.

Note that this step is a one-time screening procedure.

3. Area Weighted (AW). The aforementioned Area Weighted method was applied to all

common items to conduct scale transformation.

4. Least Absolute Values (LAV). The aforementioned Least Absolute Values method was

applied to all common items to conduct scale transformation.

5. Raju’s Differential Functioning of Items and Tests (DFIT; Raju, van Der Linden, &

Fleer, 1995). The ICCs were compared after the two sets of item parameters had been

placed on the same scale using the Stocking-Lord method. The outlier detection proce-

dure was implemented using R package DFIT (Cervantes, 2017), where the Mantel-

Haenszel statistic was transformed into the ETS delta scale (Roussos & Stout, 1996).

The Stocking-Lord scale transformation was rerun after removing items with large or

C-level delta from the common item set.

After dealing with the outliers and placing the item parameter estimates from both new and

old test forms on the same scale using one of the five methods, the authors conducted IRT true

score equating and evaluated the equating results.
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The idea of maintaining content representativeness was one of the major motivations to

develop the robust scale transformation methods. At first thought, it might be intuitive to include

different conditions of content. However, the authors did not simulate different conditions of

content representativeness in this study because (a) the robust methods have the advantage over

traditional outlier detection and elimination methods, such that the content representativeness

would not be affected during scale transformation and (b) the effects of content representative-

ness have already been studied. By doing so, the authors limited their focus to examining differ-

ences among the outlier treatment methods.

IRT True Score Equating

IRT true score equating was conducted according to Kolen and Brennan (2014) where the

number-correct true scores from two test forms are equivalent at a given ability level. In this

study, the authors used scores of 1-45 as the true scores for the short test form and 1-120 for

the long test form.

Evaluation

The authors replicated the simulation 100 times and computed bias and root mean squared error

(RMSE) of the scale transformation coefficients to evaluate the accuracy of different outlier

treatment methods.

Let v denote the true value of a scale transformation coefficient, either A or B, v̂ represent

an estimate of the scale transformation coefficient, �v represent the mean of the scale transfor-

mation coefficient over replications, and R represent the number of replications. The bias was

computed by

Biasðv̂Þ= �v� v,

and the RMSE was calculated by

RMSEðv̂Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½SE(v̂)�2 + ½Bias(v̂)�2

q
,

where

SE v̂ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r = 1
v̂r � �vð Þ2

r
:

The bias and RMSE of the equated score at each number-correct score point were also com-

pared to the true equating relationship that was obtained when no outlier was simulated.

Considering all score points, the weighted root mean square error (WRMSE) and weighted

absolute bias (WAB) were calculated as follows:

WRMSE =
Xk

s = 0

Ps � RMSEs,

WAB =
Xk

s = 0

Ps � jBiassj,

where Ps is the proportion of examinees at score point s and k is the number of the maximum

score point on the test.
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For evaluation, the authors anticipated that the robust scale transformation methods would

reduce errors in the presence of outlying common items, and their performance would be com-

parable to other outlier treatment methods, such as the Elimination method and the DFIT

method. Inferential statistics have been suggested to extend the descriptive results of the eva-

luation when effects of multiple factors were investigated and compared in simulation studies

(e.g., Donoghue & Isham, 1998; Harwell, 1997; Harwell, Stone, Hsu, & Kirisci, 1996; Yoes,

1995). As a result, the authors conducted analysis of variance (ANOVA) to investigate the rela-

tionship between the simulated factors (number of outliers simulated, the magnitude of item

parameter change, and outlier treatment methods), for both the short test form and the long test

form. Although different ability distributions were simulated for examinees, the authors did not

include this condition in the ANOVA procedures because the comparison among the ability dis-

tributions was not of the main interest of this study. The log-transformed absolute bias and

RMSE were used as the dependent variables for the scale transformation coefficients, and log-

transformed WAB and WRMSE were used as the dependent variable for the equated scores

because the actual values were positively skewed. The highest order interaction term was

omitted due to the fact that there was only one observation within each cell in this study design.

Following the ANOVA, the authors interpreted the results to determine statistical significance

at a = .05 level and practical significance by using omega-squared (v2) effect size following

the guidelines of Wickens and Keppel (2004). Specifically, v2� 0.01 indicates a small effect,

v2� 0.06 shows a moderate effect, and v2� 0.15 means a large effect.

Results

Evaluation of Scale Transformation

To evaluate the recovery of scale transformation coefficients, the bias and RMSE of scale trans-

formation coefficients were computed. Tables 1 and 2 show the results for the short test form.

As can be seen from Table 1, all outlier treatment methods performed equally well regarding

bias when there was no outlier in the common item set. The differences among these methods

were very small and most likely due to sampling error. When there was one outlier, all outlier

treatment methods performed similarly in recovering the slope coefficient (A) values, whereas

the LAV method performed the best in recovering the intercept coefficient (B) values. When the

change of b-parameter was large, the LAV method had the least bias for the intercept coefficient

as compared to the other methods, although the differences among the outlier treatment methods

Table 1. Bias of Scale Transformation Coefficients in the Short Test Form.

A B

Outlier condition NT LAV AW EL DFIT NT LAV AW EL DFIT

No outlier –0.003 –0.003 –0.003 –0.003 –0.003 –0.001 0.000 –0.001 –0.001 –0.001
One Small –0.001 –0.004 –0.001 0.000 0.004 0.024 0.007 0.014 0.021 0.017

Large 0.001 –0.006 0.009 –0.004 0.004 0.053 0.007 0.013 0.011 0.009
Three Small 0.010 –0.002 0.016 0.013 0.027 0.069 0.013 0.039 0.065 0.047

Large –0.011 –0.006 0.040 –0.004 0.004 0.156 0.011 0.036 0.040 0.032

Note. Bold font indicates the best method under the given condition. A stands for the slope coefficient of scale

transformation, and B stands for the intercept coefficient of scale transformation. NT = no treatment; LAV = least

absolute values; AW = area weighted; EL = elimination; DFIT = Raju’s Differential Functioning of Items and Tests. Small

indicates Db ~ U(–0.5, 0.1), and large indicates Db ~ U(–1.0, –0.5).
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were small. For the condition of three outliers, the LAV method performed the best in recovering

the transformation coefficients, both A and B, when the change was small. The Elimination

method and the DFIT method had the least bias for the slope coefficient (A) values when the

change was large, which were slightly different from the LAV method. Regardless of the magni-

tude of changes, the LAV method yielded the least bias in recovering the intercept coefficient (B).

Table 2 shows that all outlier treatment methods yielded similar RMSE values when there

was no outlier in the common item set. The differences among these methods were small and

most likely due to sampling error. It is consistent with the finding from Table 1 in that all out-

lier treatment methods performed equally well when there was no outlier in the data. This find-

ing seems to suggest that it is safe to use the robust methods as a general scale transformation

method even when no outlier is present in the data. This finding is consistent with what He et

al. (2015) reported.

When the magnitude of b-parameter change was large, the RMSE yielded by the No

Treatment method dramatically increased, while other methods significantly helped to remedy

the situation in terms of reducing RMSE of the scale transformation coefficients. Regardless of

the number of outliers, the LAV method performed the best and yielded the least RMSE values

in recovering both slope and intercept coefficients (Table 2).

As expected, the ANOVA results (Table 3) indicated statistically significant differences in

bias among the outlier treatment methods. Specifically, the magnitude of b-parameter changes

Table 3. Omega Squares (v2) from ANOVA on Bias and RMSE for the Short Test Form.

Transformation coefficients Equated scores

Bias RMSE

Source of variation DF A B A B WAB WRMSE

Outlier treatment methods (M) 4 0.048 0.099 0.101 0.200 0.074 0.043
Number of outliers simulated (N) 1 0.231 0.002 0.171 0.110 0.067 0.145
Magnitude of b-parameter changes (C) 2 0.046 0.590 0.387 0.325 0.621 0.639
M3N 4 0.044 0.014 0.020 0.031 –0.003 0.000
M3C 8 –0.018 0.013 0.119 0.136 0.111 0.055
N3C 2 0.149 0.241 0.119 0.109 0.100 0.079

Note. Bold font indicates both statistically significant (p \ .05) and practically significant (v2� 0.01). A stands for the

slope coefficient of scale transformation, and B stands for the intercept coefficient of scale transformation. ANOVA =

analysis of variance; RMSE = root mean squared error; WAB = weighted absolute bias; WRMSE = weighted root

mean square error.

Table 2. RMSE of Scale Transformation Coefficients in the Short Test Form.

A B

Outlier condition NT LAV AW EL DFIT NT LAV AW EL DFIT

No outlier 0.021 0.023 0.023 0.021 0.021 0.026 0.026 0.026 0.026 0.026
One Small 0.026 0.022 0.024 0.025 0.024 0.035 0.025 0.029 0.034 0.031

Large 0.047 0.023 0.024 0.027 0.027 0.061 0.027 0.030 0.032 0.031
Three Small 0.039 0.024 0.046 0.038 0.042 0.077 0.027 0.051 0.074 0.058

Large 0.077 0.026 0.053 0.049 0.053 0.163 0.026 0.048 0.062 0.056

Note. Bold font indicates the best method under the given condition. A stands for the slope coefficient of scale

transformation, and B stands for the intercept coefficient of scale transformation. RMSE = root mean squared error;

NT = no treatment; LAV = least absolute values; AW = area weighted; EL = elimination; DFIT = Raju’s Differential

Functioning of Items and Tests. Small indicates Db ~ U(–0.5, 0.1), and large indicates Db ~ U(–1.0, –0.5).
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(C; v2 = 0.590) had the largest impact on the recovery of B coefficient, and the LAV method

generally had the least bias among the investigated outlier treatment methods (M; v2 = 0.099).

The ANOVA results also show that differences in RMSE among outlier treatment methods were

statistically significant (M; v2 = 0.212), and the outlier treatment method had significant interac-

tion with the magnitude of b-parameter change (C; v2 = 0.440 for coefficient A and v2 = 0.043

for coefficient B). Full ANOVA tables are given in the online supplement.

Evaluation of Equated Scores

The bias and RMSE of equated scores on the short test form under the no outlier condition are

shown in Figure 1. This figure shows that all methods yielded similar bias and RMSE. Although

the robust methods yielded larger errors as compared to other methods, the difference was small

(less than 0.04 for RMSE).

Figure 2 shows the bias of the equated scores on the short test form under different outlier

conditions. Consistent with the findings in the literature, the No Treatment method yielded the

largest bias in all outlier conditions. The more severe was the outlier(s), the larger was the bias

for the equated scores. When the change of b-parameter value was small, the robust methods

(AW and LAV) generally yielded smaller bias than the elimination method and the DFIT

method. When the change of b-parameter value was large, all four outlier treatment methods

seemed to work comparably by reducing the bias when there was only one outlier in the data.

The Elimination method yielded slightly less bias than the others, but there was not a clear pat-

tern to conclude. For the condition of three outliers changed with a large magnitude, the differ-

ence was more evident—the Elimination method, at the most score points, yielded the smallest

bias among all the outlier treatment methods. The comparison between the two robust methods

was not conclusive because sometimes the AW method was better and the other times the LAV

was better.

Figure 3 shows the RMSE results of the equated scores for the short test form. When the

change of b-parameter was small, the LAV method performed the best by yielding the smallest

Figure 1. The bias and RMSE of equated scores in the short test form under the no outlier condition.
Note. RMSE = root mean squared error; DFIT = differential functioning of items.
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RMSE values at almost all score points. This finding was more apparent for the condition with

multiple outliers. When the change of b-parameter was large, the LAV method also performed

well. It was slightly better than the DFIT method and the Elimination method by yielding

smaller RMSE values at almost all score points. The comparison between the two robust meth-

ods, similar to the bias results, was inconclusive. Specifically, the AW method had smaller

RMSE than the LAV method in the middle of the score range and larger elsewhere. The results

are supported by the ANOVA results for WAB and WRMSE of the equated scores (Table 3),

where the main effect of outlier treatment method and its interactions with the magnitude of b-

parameter change were found to be statistically significant (see the online supplement for full

ANOVA results).

Although the comparison between the Elimination method and the DFIT method was not a

focus of this study, the results did show some differences regarding their performance in outlier

identification and, consequently, scale transformation and equating accuracies. Generally, as

seen in Figure 3, the DFIT method outperformed the Elimination method when the change of

Figure 2. The bias of equated scores in the short test form in the presence of outliers.
Note. DFIT = differential functioning of items.
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b-parameter was small, and the two methods were similar when the change was large. The find-

ing was also supported by the results of outlier detection rate—the DFIT method had higher out-

lier detection rate when the change of b-parameter was small and similar rate when the change

of b-parameter was large (results are not shown).

The results for the long test form are provided in the online supplement, showing similar pat-

tern found for the short test form.

Discussion

Outliers in the common item set pose threats to a successful equating because they can poten-

tially distort the equating relationship by reducing the accuracy of scale transformation. Thus, it

is important to detect and treat outliers in the common item set before conducting equating. The

treatment of outliers is not necessarily equivalent to either elimination or inclusion. He et al.

(2015) proposed two robust methods using weights more than zero (as in the case of

Figure 3. The RMSE of equated scores in the short test form in the presence of outliers.
Note. RMSE = root mean squared error; DFIT = differential functioning of items.
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elimination) and one (as in the case of inclusion). Their results indicate that the robust methods

reduced the influence of outliers on scale transformation and thus on the equating accuracy

when only one outlier was in the common item set. The results of He et al. seem promising;

however, multiple outliers should be examined before the method can be adapted in practice

because (a) multiple outliers are likely to be observed and (b) a method that works for one out-

lier may not work for multiple outliers because of the masking and swamping effects.

The performance of the robust methods when there was no outlier in the data is comforting

because using these methods in place of traditional approaches (e.g., the Stocking-Lord method)

seemed to work well. It implies that we do not need to screen the data before applying the

robust methods, regardless of the presence/absence of outliers. The Elimination method, the

DFIT method, or other outlier detection and elimination methods (He et al., 2013; Raju, 1990)

generally have at least three steps: (a) scale transformation, (b) outlier detection and exclusion,

and (c) scale transformation with the ‘‘cleaned’’ common item set. The stepwise or sequential

methods (Guo et al., 2015) have even more steps. Unlike these methods, the robust scale trans-

formation methods are one-step procedures. This feature of the robust methods is appealing in

practice because it would be easier and time-saving for operational use compared with the tradi-

tional approaches. The performance of the robust methods when there was one outlier was simi-

lar to what was reported by He et al. (2015). When there were multiple outliers, the results of

the present study confirmed that the same conclusion holds.

In this study, the authors compared the robust methods to the Elimination method and the

DFIT method which are widely used in practice but were not studied by He et al. (2015).

Although it occasionally yielded larger bias than the Elimination method and the DFIT method,

the LAV method generally performed better than the two methods by yielding smaller RMSE

under almost all conditions. For carefully developed tests, large deviation of b-parameters

might be handled in the earlier stages. On the other hand, a small change of b-parameters might

be more commonly seen in practice. The results were again found to favor the LAV method due

to its capability of reducing errors under such conditions.

Although the AW method reduced the influence of outliers compared to the No Treatment

method, its performance across all score points appeared to be unstable. For example, the bot-

tom right graph in Figure 3 shows a wavy curve for the AW method, which indicates that the

AW method yielded lower RMSE values than the other methods, mostly at the lower half of

the score points but larger RMSE values at the higher half of the score points. For this reason,

the authors do not recommend the AW method, at least under the conditions researched in this

study. However, it does not mean that we should discard the AW method. The performance of

this method might be affected by the tuning constant. With the right tuning constant, the perfor-

mance of the AW method might be improved.

The overall performance of the LAV method is the best among methods investigated in the

study, thus the authors recommend it for an operational trial. The LAV method has an apparent

advantage that it does not need to set up a cutoff point or a constant as required by the other

methods. In addition, this method maintains the content balance because it does not require to

exclude any item from the common-item set. One might argue that a minimal weight may even-

tually be equivalent to deleting an item. Strictly speaking, the LAV method will not remove an

item unless the difference between the two probabilities from the old form and the new form

for an examinee to answer a given item correctly (|dij|) is infinite, which is impossible in prac-

tice. To show this, the authors simulated an outlier with a large b-parameter difference (0.65).

With the Elimination method or the DFIT method, the item was excluded for scale transforma-

tion. The largest difference, |dij|, was 0.32, and the weight, 1/|dij| = 3.13, was far from zero.

Although this study’s results support using the LAV method in practice, one should try it out

before operational implementation. Inspection of the bivariate plot of item parameters from the
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two calibrations is recommended for close monitoring on its initial use and periodical checking

on its regular uses.

Not much research on robust scale transformation has been found in the literature, although

it deserves more attention because of its potential to provide more accurate scale transformation

results. The present study is limited in scope and could be extended in the following ways. First,

one could examine the robust methods using more practical conditions of outliers, such as the

one proposed by Han, Wells, and Sireci (2012). Second, although the 3PL IRT model was used

in this study, the focus was only on changing a- and b-parameters. The change of c-parameter

values may affect the a- and b-parameter values, and this should be investigated in the future.

Other IRT models, for example, two-parameter logistic (2PL) model, graded response model

(GRM), or generalized partial credit model (GPCM), could also be considered. Third, one could

extend this study by improving the AW method. In addition to studying the tuning constant of

the Huber weighting function for the AW method, one could calculate the area in a restricted

range (e.g., –1 \ u \ 1), which may be a better indicator regarding the outlying behavior of an

item than the area over the whole range. Lastly, the robust methods could be compared with

many others (e.g., the Haebara scale transformation method, the concurrent calibration method,

or others). With more research on the new methods, we will likely have a better scale transfor-

mation which will result in more accurate comparable scores for students.
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Acknowledgment

The authors thank Dr. Qing Yi, Dr. J. P. Kim, Dr. John Donoghue, and anonymous reviewers for their con-

structive comments on this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or pub-

lication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Yong He https://orcid.org/0000-0003-2014-8208

Zhongmin Cui https://orcid.org/0000-0003-2426-6762

Supplemental Material

Supplemental material for this article is available online.

References

American Educational Research Association, American Psychological Association, and National Council

on Measurement in Education. (2014). Standards for educational and psychological testing.

Washington, DC: Author.

308 Applied Psychological Measurement 44(4)



Ben-Gal, I. (2005). Outlier detection. In O. Maimon & L. Rockach (Eds.), Data mining and knowledge

discovery handbook: A complete guide for practitioners and researchers. Dordrecht, The Netherlands:

Kluwer Academic.

Cervantes, V. H. (2017). DFIT: An R package for the differential functioning of items and tests framework.

Bogota, Colombia: Instituto Colombiano para la Evaluación de la Educación.

Cook, L. L., & Eignor, D. R. (1991). An NCME instructional module on IRT equating methods.

Educational Measurement: Issues and Practice, 10, 37-45.

Cook, L. L., & Petersen, N. S. (1987). Problems related to the use of conventional and item response

theory equating methods in less than optimal circumstances. Applied Psychological Measurement, 11,

225-244.

DeMars, C. E. (2004). Detection of item parameter drift over multiple test administrations. Applied

Measurement in Education, 17, 265-300.

Donoghue, J. R., & Isham, S. P. (1998). A comparison of procedures to detect item parameter drift.

Applied Psychological Measurement, 22, 33-51.

Gao, X., Hanson, B. A., & Harris, D. J. (1999, April). Effect of using different common item sets under the

common item non-equivalent groups design. Paper presented at the Annual Meeting of the American

Educational Research Association, Montreal, Canada.

Guo, R., Zheng, Y., & Chang, H.-H. (2015). A stepwise test characteristic curve method to detect item

parameter drift. Journal of Educational Measurement, 52, 280-300.

Hadi, A. S., & Simonoff, J. S. (1993). Procedures for the identification of multiple outliers in linear

models. Journal of the American Statistical Association, 88, 1264-1272.

Han, K. T., Wells, C. S., & Sireci, S. G. (2012). The impact of multidirectional item parameter drift on

IRT scaling coefficients and proficiency estimates. Applied Measurement in Education, 25, 97-117.

Hanick, P. L., & Huang, C.-Y. (2002, April). Effects of decreasing the number of common items in

equating link item sets. Paper presented at the annual meeting of the American Educational Research

Association, New Orleans, LA.

Hanson, B. A., & Feinstein, Z. S. (1997). Application of a polynomial log linear model to assessing

differential item functioning for common items in the common-item equating design (ACT Research

Report Series 97-1). Iowa City, IA: ACT.

Hanson, B. A., & Zeng, L. (1995). ST: A computer program for IRT scale transformation [Computer

software]. Iowa City, IA: ACT.

Harwell, M. R. (1997). Analyzing the results of Monte Carlo studies in item response theory. Educational

and Psychological Measurement, 57, 266-278.

Harwell, M. R., Stone, C. A., Hsu, T., & Kirisci, L. (1996). Monte Carlo studies in item response theory.

Applied Psychological Measurement, 20, 101-125.

He, Y., Cui, Z., Fang, Y., & Chen, H. (2013). Using a linear regression method to detect outliers in IRT

common item equating. Applied Psychological Measurement, 37, 522-540.

He, Y., Cui, Z., & Osterlind, S. J. (2015). New robust scale transformation methods in the presence of

outlying common items. Applied Psychological Measurement, 39, 613-626.

Holland, P. W., & Dorans, N. J. (2006). Linking and equating. In R. Brennan (Ed.), Educational

measurement (4th ed., pp. 187-220). Westport, CT: Praeger.

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel

procedure. In H. Wainer & H. I. Braun (Eds.), Test validity (pp. 129-145). Hillsdale, NJ: Lawrence

Erlbaum.

Hu, H., Rogers, W. T., & Vukmirovic, Z. (2008). Investigation of IRT-based equating methods in the

presence of outlier common items. Applied Psychological Measurement, 32, 311-333.

Huber, P. J. (1981). Robust statistics. New York, NY: Wiley.

Huynh, H., & Meyer, P. (2010). Use of robust z in detecting unstable items in item response theory

models. Practical Assessment, Research & Evaluation, 15, 1-8.

Klein, L. W., & Jarjoura, D. (1985). The importance of content representation for common-item equating

with nonrandom groups. Journal of Educational Measurement, 22, 197-206.

Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking: Methods and practices (3rd

ed.). New York, NY: Springer.

He and Cui 309



Raju, N. S. (1990). Determining the significance of estimated signed and unsigned areas between two item

response functions. Applied Psychological Measurement, 14, 197-207.

Raju, N. S., van Der Linden, W. J., & Fleer, P. F. (1995). An IRT based internal measure of test bias with

applications for differential item functioning. Applied Psychological Measurement, 19, 353-368.

Roussos, L. A., & Stout, W. F. (1996). Simulation studies of the effects of small sample size and studied

item parameters on SIBTEST and Mantel-Haenszel Type I error performance. Journal of Educational

Measurement, 33, 215-230.

Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. Applied

Psychological Measurement, 7, 201-210.

Veerkamp, W. J. J., & Glas, C. A. W. (2000). Detection of known items in adaptive testing with a

statistical quality control method. Journal of Educational and Behavioral Statistics, 25, 373-389.

Wickens, T. D., & Keppel, G. (2004). Design and analysis: A researcher’s handbook (4th ed.). Englewood

Cliffs, NJ: Prentice Hall.

Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). New York, NY:

Academic Press.

Wolkowitz, A. A., & Davis-Becker, S. (2015). Evaluating common item block options when faced with

practical constraints. Practical Assessment, Research and Evaluation, 20(19). Retrieved from http:

//pareonline.net/getvn.asp?v=20&n=19

Yoes, M. (1995). An updated comparison of micro-computer based item parameter estimation procedures

used with the 3-parameter IRT model (ASC Technical Report 95-1). Saint Paul, MN: Assessment

Systems Corporation.

Zimowski, M., Muraki, E., Mislevy, R. J., & Bock, R. D. (2003). BILOG-MG 3: Item analysis and test

scoring with binary logistic models [Computer software]. Chicago, IL: Scientific Software.

310 Applied Psychological Measurement 44(4)


